## MARK SCHEME for the October/November 2012 series

## 9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2012 | 9709     | 11    |

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol s<sup>h</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2012 | 9709     | 11    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Page 4 Mark Scheme                     |      | Paper |
|--------|----------------------------------------|------|-------|
|        | GCE AS/A LEVEL – October/November 2012 | 9709 | 11    |

| 1 | $\frac{n}{2[122 + (n-1)(-4)]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1      | Attempt sum formula with $a = 61$ , $d = -4$          |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------|
| 1 | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1      | Equated to <i>n</i> cao                               |
|   | $n = \frac{n}{2[122 + (n - 1)(-4)]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DM1     | Attempt to solve. Accept div. by $n$                  |
|   | 2n(n-31) = 0 $n = 31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1      | cao                                                   |
|   | <i>n</i> = 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [4]     |                                                       |
|   | $y = \frac{4}{x^2} - x  (+c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1A1    | Attempt integration. cao                              |
| 2 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DM1A1   | Dependent on c present                                |
|   | $\mathrm{Sub}(2,4) \longrightarrow \mathbf{c} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [4]     |                                                       |
|   | $A = \pi r^2 \rightarrow \left(\frac{\mathrm{d}A}{\mathrm{d}r}\right) = 2\pi r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1      |                                                       |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1      |                                                       |
|   | $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}  \text{used}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1      |                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                       |
|   | $\frac{\mathbf{d}r}{\mathbf{d}t} = 3$ soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 [4]  |                                                       |
|   | <b>300</b> <i>π</i> (or 942)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [.]     |                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1B1B1  | cao                                                   |
| 4 | (i) $(2x-x^2)^6 = 64x^6 - 192x^7 + 240x^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]     | cao                                                   |
|   | (ii) $\times (2 + x)$ coeff of $x^{B} = 2 \times 240 - 192$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1      | Looks at exactly 2 terms                              |
|   | $\frac{11}{288}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1√ [2] |                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [2]     |                                                       |
| _ | $\frac{dy}{dx} = 2 - 2(x - 1)^{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B2,1,0  | -1 each error in 2, −2, ( <b>x</b> − 1) <sup>-2</sup> |
| 5 | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1      | AG                                                    |
|   | Sub $x = 2 \rightarrow \frac{dy}{dx} = 2 - 2 = 0 \Rightarrow$ stat value at $x = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1      |                                                       |
| 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1411    | Reasonable attempt to diff form $(x - 1)^{-n}$        |
|   | $\frac{d^2 y}{dx^2} = 6(x-1)^{-4} $ (and sub $x = 2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1      | $\frac{d^2y}{d^2y}$                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [5]     | Correct $dx^2$ and 'minimum' is required              |
|   | (At $x = 2$ , $\frac{\mathbf{d}^2 y}{\mathbf{d} x^2} = 6$ ) > 0 $\Rightarrow$ Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Or other valid method for last 2 marks                |
|   | (111 - 2), $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(111 - 2)$ , $(11$ |         |                                                       |
| 6 | (i) $AC = r - r\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1      |                                                       |
|   | <b>4</b> π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1]     |                                                       |
|   | (ii) arc $AB = \frac{4\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1      |                                                       |
|   | arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1A1    | Allow $\pi \times their AC$ for M1. Allow 3.14        |
|   | $AD = \frac{\pi}{2} \times their AC = \frac{\pi}{2} \times \left(4 - 4\cos\left[\frac{\pi}{3}\right]\right) = \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                       |
|   | 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1A1    | Allow 1.46                                            |
|   | $BD = 4\sin\frac{\pi}{3} - their AC = 2\sqrt{3} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1      | cao Accept √12                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [6]     |                                                       |
|   | Perimeter = $\frac{37\pi}{3} + 2\sqrt{3} - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                       |
| L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l       |                                                       |

|    | Page                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mark Scheme                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                                                  | Syllabus                                                                                                                                                                                             | Paper                               |  |
|----|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
|    |                                         | GCE AS/A LEVEL – October/November 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                                                                                       | r 2012                                                                                                                                                           | 9709                                                                                                                                                                                                 | 11                                  |  |
| 7  | (2<br>0:<br>(ii) n:<br>(t)              | 2 sin <u>[</u> θ -<br>= 30° α<br>= <del>their</del><br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      | M1<br>M1<br>A1A1<br>[4]<br>B1√ <sup>ħ</sup><br>M1<br>A1<br>[3]                        | Use $c^2 + s^2 = 1$<br>Attempt to solve<br>cao<br>ft provided <i>n</i> is an integer<br>Allow full list up to at least 870<br>cao                                |                                                                                                                                                                                                      |                                     |  |
| 8  | x:                                      | = <mark>1</mark> or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow y(y - 3) = 0 \Rightarrow y = 3 \text{ (or } 0)$ 5 (\Rightarrow a = 5) AG                                                                                                                                                                                | M1<br>A1<br>[2]<br>B1B1B1                                                             | <b>OR</b> form equation in x and attempt<br>solution<br><b>OR</b> sub $x=5$ each eq (M1) $\rightarrow y = 3$ (twice)<br>(A1)<br>(5,3) subst only once scores 0/2 |                                                                                                                                                                                                      |                                     |  |
|    | $\left[\frac{2}{3}\right]$              | $\left[\frac{7}{3} - 0\right]_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{bmatrix} \frac{3}{3} \\ - \end{bmatrix} \begin{bmatrix} \div 2 \end{bmatrix}_r \qquad \begin{bmatrix} \frac{2}{3} \\ \times \\ \frac{2}{2} \\ - \\ \frac{5}{3} \\ - \\ \frac{5}{3} \\ - \\ \frac{1}{2} \\ - \\ \frac{1}{6} \end{bmatrix}$ reas at some stage | M1<br>M1<br>A1<br>[6]                                                                 | Apply lin<br>Depender<br>cao 9/4                                                                                                                                 | Or $\Delta = \frac{1}{2}(5 - \frac{1}{2}) \times 3$<br>Apply limits $\frac{1}{2}$ and 5 for, at le<br>Dependent on some integration<br>cao 9/4 with no working sco<br>9 - 27/4 = 9/4 scores 1/6 (M1) |                                     |  |
| 9  | Unit ve<br>01<br>(ii)<br>01<br>01<br>16 | $\vec{E} = \begin{pmatrix} 1 \\ 7 \\ 3 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $ | $\binom{2}{1} + 2\binom{4}{0} = \binom{2}{-3}$ $\binom{2}{-3} + \binom{1}{-3} = \binom{7}{1\frac{12}{9}}$ $56 + 0 + 108 = 164$ $(132.25 (= 11.5);   \overrightarrow{OD}   = \sqrt{208}$ $2.25 \times \sqrt{208 \times \cos \theta}$ cao                              | B1<br>M1A1<br>[3]<br>M1A1<br>M1<br>M1<br>M1<br>A1<br>[6]                              | etc<br>or equival<br>Use of <b>%</b> <sub>1</sub><br>Correct m<br>All conne                                                                                      | $\frac{1}{7}\begin{pmatrix} -2\\ 3\\ -6 \end{pmatrix}$<br>lent method<br>$x_2 + y_1y_2 + z_1z_2$<br>nethod for modul<br>octed correctly. D<br>$\overline{DD, DO}$ used                               | 2 <b>2</b><br>i                     |  |
| 10 | (ii) rar<br>(iii) (x<br>x -<br>g        | ertex is (<br>nge is ( $\frac{1}{2}$<br>$(-3)^2 = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3, -25)<br>$g(x) ) \ge -9$ Allow ><br>$= \frac{1}{4(y+25)}$<br>$\frac{\pm )1}{2} \sqrt{y+25}$<br>$3 - \frac{1}{2} \sqrt{x+25}$                                                                                                                                      | B1B1B1<br>B1√ <sup>h</sup> [4]<br>B1B1 [2]<br>M1<br>DM1<br>A1<br>B1√ <sup>h</sup> [4] | ft to <i>their</i><br>B1 for $\geq$ ,                                                                                                                            | o square root bot                                                                                                                                                                                    | f not 'hence'<br>.ccept e.g. [−9,∞] |  |

© Cambridge International Examinations 2012

| Page                                                        | e 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                               | Syllabus                                                                                    | Paper                             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCE AS/A LEVEL – October                                                                                                                                                                                                                                                                                                                                                                                                                           | /Novembe                                                                                            | r 2012                                                                                                        | 9709                                                                                        | 11                                |
| E<br>E<br>(ii) <i>B</i><br>(iii) <i>B</i><br><i>y</i><br>In | Equation of<br>Equation of<br>Both eqns<br>$B = (0, 1)/2^2$<br>$B = (0, 1)/2^2$<br>B = | $\times \left[\frac{1}{3}(6x+2)^{-\frac{2}{3}}\right]$<br>of tangent is $y-2 = m(x-1)$<br>of normal is $y-2 = -\frac{1}{m(x-1)}$<br>correct with $m = \frac{1}{2}$ cao<br>$\frac{2}{2};  C = (2, 0)$<br>$+ \left(1\frac{1}{2}\right)^2 = 2\frac{1}{2}$<br>$1\frac{1}{2} = -\frac{3}{4(x-0)}$ or<br>$\frac{3}{x-2}$<br>on $(E): -\frac{3}{4}x + 1\frac{1}{2} = 2x$<br>$y = \frac{12}{11}$<br>of $OA = (\frac{1}{2}, 1) \rightarrow E$ not mid-point | B1B1<br>M1<br>M1<br>A1<br>[5]<br>B1<br>M1A1<br>√ <sup>*</sup><br>[3]<br>M1<br>M1<br>A1<br>B1<br>[4] | Independed<br>Where $m$<br>Including<br>SC 1/3 B<br>Both cao<br>ft from $th$<br>or $y = -$<br>cao<br>Dependen | ent<br>= numerical $\frac{dy}{dx}$<br>use of $m_1m_2$ =<br>latant tangent/no<br>eir B and C | rmal reversal<br>lues or y values |