MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

1	(i) Mean = 2.6	B1		
	$Var = 4 \times 1.3$	M1		M1 for either 4 ×, or for $Var(X) = 1.3$ implied
	= 5.2	A1	[3]	
	(ii) Var \neq mean or 2X does not take all integer values	B1	[1]	X and X are not independent oe
2	H ₀ : P(correct) = ${}^{1}/{}_{5}$ H ₁ : P(correct) > ${}^{1}/{}_{5}$ B(100, ${}^{1}/{}_{5}$) \approx N(20, 16)	B1		Accept p Accept H_0 : $\mu = 20$ H_1 : $\mu > 20$
	$\frac{26.5 - 20}{4} = 1.625$	M1 A1		Allow wrong or no cc or denom = 16 For ± 1.625
		A1		
	$\operatorname{comp} z = 1.645$	M1		Valid comparison of z or areas $(0.0521 > 0.05)$
	Claim not justified	A1ft	[5]	In context. No contradictions. Ft their z.
3	$Var(Tot) = 0.02^2 + 0.03^2 + 0.01^2 = 0.0014$	B1		
	Mean(Tot) = 0.37 Tot ~ N(0.37 , 0.0014)	B1		
	$\frac{0.30 - 0.37}{\sqrt{0.0014'}} (= -1.871)$	M1		Allow without $\sqrt{.}$ No cc
	Φ ("-1.871") = 1 - Φ ("1.871")	M1		
	= 0.0306 or 0.0307	A1	[5]	Correct area
4	(i) $\operatorname{Est}(\mu) = 331(.125)$	B1		
	$\operatorname{Est}(\sigma^2) = \frac{8}{7} \left(\frac{"877179"}{8} - "331.125"^2 \right)$	M1		Allow their Σx^2
	= 4.125 or 4.13	A1	[3]	
	(ii) $z = 2.326$	B1		
	$331 \pm z \times \sqrt{\frac{4.2}{50}}$	M1		Allow incorrect $z \neq (1, 0)$, not a prob
	= 330 to 332 (3 sfs)	A1	[3]	Ignore brackets, if given. CWO
	(iii) No, because 333 is not within CI	B1ft	[1]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

$\frac{\overline{x} - 22}{3.5} > 1.645$ $\frac{\overline{x} - 22}{\sqrt{12}} > 1.645$ $\overline{x} > 23.66(20)$ $\overline{x} > 23.7 \text{ AG}$ (i) $P(\overline{x} < 23.7 \mu = 25.8)$ (ii) $P(\overline{x} < 23.7 \mu = 25.8)$ $\frac{23.662 - 25.8}{\sqrt{12}} = -2.116$ $\frac{23.7 - 25.8}{\sqrt{12}} = -2.078$ (i) $P(-2.116^{\circ}) = 1 - \Phi(^{\circ}2.116^{\circ})$ (i) $P(^{\circ}-2.018^{\circ}) = 1 - \Phi(^{\circ}2.018^{\circ})$ $= 0.0172 (3 \text{ sfs})$ (ii) $e^{-6} \times \frac{6^{5}}{5!}$ (iii) $e^{-6} \times \frac{6^{5}}{5!}$ (iii) $\lambda = 2.4$ $e^{-2} \left(1 + 2.4 + \frac{2.4^{2}}{2!}\right)$ $= 0.570 (3 \text{ sfs})$ (iii) $A = 2.4$ (iv) $P(-2.078 + 2.4)$ (iv) $P(-2.078 + 2.4)$ (iv) $P(-2.416^{\circ})$					
$\overline{\sqrt{12}}$ A1 Accept '=' (standardising using 23.7 scores M1A0 or $\overline{x} = 23.66(20)$ $\overline{x} > 23.7$ AG A1 [3] For attempt type II error and standardising (ii) P($\overline{x} < 23.7 \mu = 25.8$) M1 For attempt type II error and standardising $\frac{23.662 - 25.8}{3.5} = -2.116$ A1 $\frac{23.7 - 25.8}{\sqrt{12}} = -2.078$ ϕ ('-2.116') = 1 - ϕ ('2.116') A1 $\frac{23.7 - 25.8}{\sqrt{12}} = -2.078$ ϕ ('-2.116') = 1 - ϕ ('2.116') M1 ϕ (''-2.078'') = 1 - ϕ (-2.078) $= 0.0172$ (3 sfs) A1 [4] $= 0.0188$ 6 (i) Customers arrive independently or randomly B1 [1] In context. Allow "singly" (ii) $e^{-6} \times \frac{6^5}{5!}$ M1 Poisson P(5), allow any mean $= 0.161$ (3 sfs) A1 [2] (iii) $\lambda = 2.4$ B1 M1 Poisson P(0, 1, 2), allow their mean allow one end error $= 0.570$ (3 sfs) A1 [3] Poisson P(0, 1, 2), allow their mean	5 (i)) ± 1.645 used	B1		
$\bar{x} > 23.7$ AG [3] (standardising using 23.7 scores M1A0 or $\bar{x} = 23.66(20)$ (ii) $P(\bar{x} < 23.7 \mu = 25.8)$ M1 For attempt type II error and standardising $\frac{23.662 - 25.8}{\frac{3.5}{\sqrt{12}}} = -2.116$ A1 $\frac{23.7 - 25.8}{\sqrt{12}} = -2.078$ $\phi(`-2.116`) = 1 - \phi(`2.116`)$ ($= 1 - 0.9828$) M1 $\phi(``-2.078") = 1 - \phi(-2.078)$ ($= 1 - 0.9812$) $= 0.0172$ (3 sfs) A1 [4] $= 0.0188$ 6 (i) Customers arrive independently or randomly B1 [1] In context. Allow "singly" (ii) $e^{-6} \times \frac{6^5}{5!}$ M1 Poisson P(5), allow any mean $= 0.161$ (3 sfs) A1 [2] (iii) $\lambda = 2.4$ B1 Poisson P(0, 1, 2), allow their mean allow one end error $= 0.570$ (3 sfs) A1 [3]		$\frac{\overline{x} - 22}{\frac{3.5}{\sqrt{12}}} > 1.645$	M1		
$\frac{23.662 - 25.8}{\frac{3.5}{\sqrt{12}}} = -2.116$ $\frac{23.7 - 25.8}{\frac{3.5}{\sqrt{12}}} = -2.078$ $\frac{3.5}{\sqrt{12}} = -2.078$ $\frac{9.(-2.078'') = 1 - \Phi(-2.078)}{(= 1 - 0.9812)}$ $= 0.0172 (3 \text{ sfs})$ A1 [4] = 0.0188 6 (i) Customers arrive independently or randomly B1 [1] In context. Allow "singly" (ii) $e^{-6} \times \frac{6^5}{5!}$ $= 0.161 (3 \text{ sfs})$ A1 [2] (iii) $\lambda = 2.4$ $e^{-2} \left(1 + 2.4 + \frac{2.4^2}{2!} \right)$ $= 0.570 (3 \text{ sfs})$ A1 [3]			A1	[3]	(standardising using 23.7 scores M1A0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii	i) $P(\bar{x} < 23.7 \mid \mu = 25.8)$	M1		
$(= 1 - 0.9828)$ $(= 1 - 0.9812)$ $= 0.0172 (3 \text{ sfs})$ A1 [4] $= 0.0188$ 6 (i) Customers arrive independently or randomly B1 [1] In context. Allow "singly" (ii) $e^{-6} \times \frac{6^5}{5!}$ M1 Poisson P(5), allow any mean $= 0.161 (3 \text{ sfs})$ A1 [2] (iii) $\lambda = 2.4$ B1 [1] $e^{-2} \left(1 + 2.4 + \frac{2.4^2}{2!} \right)$ M1 Poisson P(0, 1, 2), allow their mean allow one end error $= 0.570 (3 \text{ sfs})$ A1 [3]		$\frac{23.662 - 25.8}{\frac{3.5}{\sqrt{12}}} = -2.116$	A1		$\frac{23.7 - 25.8}{\frac{3.5}{\sqrt{12}}} = -2.078$
6(i)Customers arrive independently or randomlyB1[1]In context. Allow "singly"(ii) $e^{-6} \times \frac{6^5}{5!}$ M1Poisson P(5), allow any mean $= 0.161 (3 \text{ sfs})$ A1[2](iii) $\lambda = 2.4$ B1 $e^{-2} \left(1 + 2.4 + \frac{2.4^2}{2!} \right)$ M1Poisson P(0, 1, 2), allow their mean allow one end error $= 0.570 (3 \text{ sfs})$ A1[3]			M1		
(ii) $e^{-6} \times \frac{6^5}{5!}$ M1 Poisson P(5), allow any mean = 0.161 (3 sfs) A1 [2] (iii) $\lambda = 2.4$ B1 $e^{-2} \left(1 + 2.4 + \frac{2.4^2}{2!} \right)$ M1 = 0.570 (3 sfs) A1 [3]		= 0.0172 (3 sfs)	A1	[4]	= 0.0188
$= 0.161 (3 \text{ sfs})$ $= 0.161 (3 \text{ sfs})$ $A1 [2]$ $(iii) \ \lambda = 2.4$ $e^{-2} \left(1 + 2.4 + \frac{2.4^2}{2!} \right)$ $= 0.570 (3 \text{ sfs})$ $A1 [3]$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$ $B1$	6 (i)) Customers arrive independently or randomly	B1	[1]	In context. Allow "singly"
(iii) $\lambda = 2.4$ $e^{-2}\left(1+2.4+\frac{2.4^2}{2!}\right)$ = 0.570 (3 sfs) B1 M1 Poisson P(0, 1, 2), allow their mean allow one end error A1 [3]	(ii	i) $e^{-6} \times \frac{6^5}{5!}$	M1		Poisson P(5), allow any mean
$e^{-2}\left(1+2.4+\frac{2.4^2}{2!}\right)$ $= 0.570 (3 \text{ sfs})$ M1 Poisson P(0, 1, 2), allow their mean allow one end error A1 [3]		= 0.161 (3 sfs)	A1	[2]	
= 0.570 (3 sfs)	(ii	ii) $\lambda = 2.4$	B1		
		$e^{-2}\left(1+2.4+\frac{2.4^2}{2!}\right)$	M1		
		= 0.570 (3 sfs)	A1	[3]	
(iv) N(24, 24) B1 Stated or implied	(iv	v) N(24, 24)	B1		Stated or implied
$\frac{295 - 24}{\sqrt{24}} (= 1.123)$ M1 Allow with wrong or no cc and/or no $\sqrt{24}$ Correct area		$\frac{295 - 24}{\sqrt{24}} (= 1.123)$	M1		Allow with wrong or no cc and/or no $$ Correct area
Φ("1.123") M1		Φ("1.123")	M1		
= 0.869 (3 sfs) A1 [4]		= 0.869 (3 sfs)	A1	[4]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	71

7	(i)	(a)	<i>X</i> or 5	B1	[1]	
		(b)	V or 3	B1		Should mention values or prob Not just graph or spread eg not "More spread"
			Higher and lower values more likely or there are more higher and lower values or more prob at both extremes	B1dep	[2]	
	(ii)	$\frac{2+}{2}$	$\frac{1}{2} \times 0.5 \text{ or } \int_{0}^{0.5} (2-2x) dx$	M1		('or' method requires linear function and correct limits)
		= 0.	75	A1	[2]	CWO
	(iii)	(a)	$\int_0^1 ax^n dx = 1$	M1		Attempt integ of correct form = 1 (ignore limits)
			$\left[\frac{ax^{n+1}}{n+1}\right]_0^1 = 1$	A1		Correct integrand & limits
			$\frac{a}{n+1} = 1$	A1		No errors seen
			$(a = n + 1 \mathbf{AG})$		[3]	
		(b)	$\int_0^1 a x^{n+1} \mathrm{d}x = \frac{5}{6} \text{oe}$	M1*		Integral of form $\int xf(x)dx = \frac{5}{6}$, ignore limits
			$\left[\frac{ax^{n+2}}{n+2}\right]_0^1 = \frac{5}{6} \text{oe}$	A1		Correct integrand & limits
			$\frac{a}{n+2} = \frac{5}{6} \\ (6a = 5n + 10)$	M1der)	Attempt to use $a = n + 1$ within 2^{nd} equ to get an equ in n (or a)
			a = 5, n = 4	A1	[4]	