UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9709 MATHEMATICS

9709/03

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only - often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	
	Misread
PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)
PA SOS	Premature Approximation (resulting in basically correct work that is insufficiently

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

- 1 Use laws of logarithms and remove logarithms correctly
 - Obtain $x + 2 = e^2 x$, or equivalent

M1 A1

- Obtain answer x = 0.313
- [SR: If the logarithmic work is to base 10 then only the M mark is available.]

- A1 [3]
- 2 EITHER: State correct unsimplified first two terms of the expansion of $\sqrt{(1-2x)}$, e.g. $1+\frac{1}{2}(-2x)$ B1
 - State correct unsimplified term in x^2 , e.g. $\frac{1}{2} \cdot (\frac{1}{2} 1) \cdot (-2x)^2 / 2!$

- В1
- Obtain sufficient terms of the product of (1 + x) and the expansion up to the term in x^2 of $\sqrt{(1-2x)}$
- Obtain final answer $1 \frac{3}{2}x^2$

M1 A1

- [The B marks are not earned by versions with symbolic binomial coefficients such as $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$.]
- [SR: An attempt to rewrite $(1+x)\sqrt{(1-2x)}$ as $\sqrt{(1-3x^2)}$ earns M1 A1 and the subsequent expansion $1-\frac{3}{2}x^2$ gets M1 A1.]
- OR: Differentiate expression and evaluate f(0) and f'(0), having used the product rule
 - Obtain f(0) = 1 and f'(0) = 0 correctly

A1

Obtain f''(0) = -3 correctly

A1

Obtain final answer $1 - \frac{3}{2}x^2$, with no errors seen

A1 [4]

3 Use correct quotient or product rule

M1

Obtain correctly the derivative in any form, e.g. $\frac{e^x \cos x + e^x \sin x}{\cos^2 x}$

A1

Equate derivative to zero and reach $\tan x = k$

M1* M1(dep*)

Solve for *x*

- A1 [5]
- Obtain $x = -\frac{1}{4}\pi$ (or -0.785) only (accept x in [-0.79, -0.78] but not in degrees)
- [The last three marks are independent. Fallacious log work forfeits the M1*. For the M1(dep*) the solution can lie outside the given range and be in degrees, but the mark is not available if k = 0. The final A1 is only given for an entirely correct answer to the whole question.]
- 4 State or imply $\frac{dx}{d\theta} = a(2 2\cos 2\theta)$ or $\frac{dy}{d\theta} = 2a\sin 2\theta$
 - Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ M1
 - Obtain $\frac{dy}{dx} = \frac{\sin 2\theta}{(1 \cos 2\theta)}$, or equivalent
 - Make use of correct sin 2A and cos 2A formulae

M1

B1

Obtain the given result following sufficient working

- A1 [5]
- [SR: An attempt which assumes a is the parameter and θ a constant can only earn the two M marks. One that assumes θ is the parameter and a is a function of θ can earn B1M1A0M1A0.]
- [SR: For an attempt that gives a a value, e.g. 1, or ignores a, give B0 but allow the remaining marks.]

			GCL A/A3 LLVLL - October/November 2000 9709	UJ	
5	(i)	EITHER:	Attempt division by $2x^2 - 3x + 3$ and state partial quotient $2x$	B1	
			Complete division and form an equation for a	M1	
			Obtain $a = 3$	A 1	
		<i>OR</i> 1:	By inspection or using an unknown factor $bx + c$, obtain $b = 2$	B1	
			Complete the factorisation and obtain a	M1	
			Obtain $a = 3$	A1	
		OR2:	Find a complex root of $2x^2 - 3x + 3 = 0$ and substitute it in $p(x)$	M1	
		ONZ.	Equate a correct expression to zero	A1	
			Obtain $a = 3$		
			$\operatorname{Obtain} a = 3$	A1	
		OR3:	Use $2x^2 \equiv 3x - 3$ in $p(x)$ at least once	B1	
			Reduce the expression to the form $a + c = 0$, or equivalent	M1	
			Obtain $a = 3$	A1	[3]
	(ii)	State ansv	wer $x < -\frac{1}{2}$ only	B1	
	()		a complete method for showing $2x^2 - 3x + 3$ is never zero	M1	
		-	the justification of the answer by showing that $2x^2 - 3x + 3 > 0$ for all x		[2]
				A1	[3]
			st two marks are independent of the B mark, so B0M1A1 is possible. Alternative methods		
		,	a) Complete the square M1 and use a correct completion to justify the answer A1; (b) Draw		
		_	zable graph of $y = 2x^2 + 3x - 3$ or $p(x)$ M1 and use a correct graph to justify the answer A1		
		(c) Find t	he x-coordinate of the stationary point of $y = 2x^2 + 3x - 3$ and either find its y-coordinate or	ſ	
		determine its nature M1, then use minimum point with correct coordinates to justify the answer A1.]			
			ccept ≤ for <]		
		·			
6	(i)	State or in	mply at any stage answer $R = 13$	B1	
	()		Formula to find α	M1	
		_	= 67.38° with no errors seen	A1	[3]
			llow radians in this part. If the only trig error is a sign error in $sin(x + \alpha)$ give M1A0.]	111	[2]
	(ii)	Evaluate	$\sin^{-1}\left(\frac{11}{13}\right)$ correctly to at least 1 d.p (57.79577°)	В1√	
			an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 360^{\circ}$	M1	
		Obtain an	answer for θ in the given range, e.g. $\theta = 27.4^{\circ}$	A1	
		Use an ap	oppropriate method to find another value of 2θ in the above range	M1	
			scond angle, e.g. $\theta = 175.2^{\circ}$ and no others in the given range	A1	[5]
			nswers outside the given range.]		
			swers in radians as a misread and deduct A1 from the answers for the angles.]		
		_	use of correct trig formulae to obtain a 3-term quadratic in $\tan \theta$, $\sin 2\theta$, $\cos 2\theta$, or $\tan 2\theta$		
			; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 +	A 1	
			o correct answers (candidates who square must reject the spurious roots to get the final A1).		
		101 the tw	to correct answers (candidates who square must reject the spurious roots to get the final AT).	Ŋ	

Mark Scheme

GCE A/AS LEVEL - October/November 2008

Syllabus

9709

Paper

03

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

7	(i)	Carry out Using the	correct pro	rect normal vector to either plane, e.g. $2\mathbf{i} - \mathbf{j} - 3\mathbf{k}$, or $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ because for evaluating the scalar product of the two normals because for the moduli, divide the scalar product by the product of the moduli	B1 M1	
				erse cosine of the result (or 1.01 radians)	M1 A1	[4]
	(ii)	EITHER:	-	a complete method for finding a point on the line	M1	
				ch a point, e.g. $(2, 0, -1)$ State two correct equations for a direction vector of the line, e.g. $2a - b - 3c = 0$	A1	
			211112111	and $a + 2b + 2c = 0$	B1	
				Solve for one ratio, e.g. <i>a</i> : <i>b</i>	M1	
				Obtain $a:b:c=4:-7:5$, or equivalent	A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$	A1√	
			OR:	Obtain a second point on the line, e.g. $(0, \frac{7}{2}, -\frac{7}{2})$	A1	
				Subtract position vectors to obtain a direction vector	M1	
				Obtain $4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$, or equivalent	A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$	A1√	
			OR:	Attempt to calculate the vector product of two normals	M1	
				Obtain two correct components	A1	
				Obtain $4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$, or equivalent	A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$	A1√	
		<i>OR</i> 1:	-	ne variable in terms of a second	M1	
			Obtain a o	correct simplified expression, e.g. $x = \frac{14 - 4y}{7}$	A1	
			Express th	ne first variable in terms of a third	M1	
			Obtain a c	correct simplified expression, e.g. $x = \frac{14 + 4z}{5}$	A1	
			Form a ve	ector equation for the line	M1	
			State a co	rrect answer, e.g. $\mathbf{r} = \frac{7}{2} \mathbf{j} - \frac{7}{2} \mathbf{k} + \lambda (\mathbf{i} - \frac{7}{4} \mathbf{j} + \frac{5}{4} \mathbf{k})$, or equivalent	A 1√	
		OR2:		ne variable in terms of a second	M1	
			Obtain a o	correct simplified expression, e.g. $y = \frac{14 - 7x}{4}$	A1	
				ne third variable in terms of the second	M1	
			Obtain a c	correct simplified expression, e.g. $z = \frac{5x - 14}{4}$	A 1	
				ector equation for the line	M1	
				rrect answer, e.g. $\mathbf{r} = \frac{7}{2} \mathbf{j} - \frac{7}{2} \mathbf{k} + \lambda (\mathbf{i} - \frac{7}{4} \mathbf{j} + \frac{5}{4} \mathbf{k})$, or equivalent	A1√	[6]
			5	4 J 4 K), or equivalent	111	٢٠٦

[The f.t. is dependent on all M marks having been obtained.]

	GCE A/AS LEVEL – October/November 2008 9709	03	
i (i)	State or obtain $\frac{dV}{dt} = 4h^2 \frac{dh}{dt}$, or $\frac{dV}{dh} = 4h^2$, or equivalent	B1	
	State or imply $\frac{dV}{dt} = 20 - kh^2$	B1	
	Use the given values to evaluate k Show that $k = 0.2$, or equivalent, and obtain the given equation [The M1 is dependent on at least one B mark having been earned.]	M1 A1	[
(ii)	Fully justify the given identity	B1	[
(iii)	Separate variables correctly and attempt integration of both sides Obtain terms $-20h$ and t , or equivalent	M1 A1	
	Obtain terms $a\ln(10+h) + b\ln(10-h)$, where $ab \neq 0$, or $k\ln\left(\frac{10+h}{10-h}\right)$	M1	
	Obtain correct terms, i.e. with $a = 100$ and $b = -100$, or $k = 2000/20$, or equivalent Evaluate a constant and obtain a correct expression for t in terms of h	A1 A1	
(i)	Integrate by parts and reach $kxe^{\frac{1}{2}x} - k \int e^{\frac{1}{2}x} dx$	M1	
	Obtain $2xe^{\frac{1}{2}x} - 2\int e^{\frac{1}{2}x} dx$	A1	
	Complete the integration, obtaining $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$, or equivalent Substitute limits correctly and equate result to 6, having integrated twice	A1 M1	
	Rearrange and obtain $a = e^{-\frac{1}{2}a} + 2$	A1	
(ii)	Make recognizable sketch of a relevant exponential graph, e.g. $y = e^{-\frac{1}{2}x} + 2$	B1	ı
	Sketch a second relevant straight line graph, e.g. $y = x$, or curve, and indicate the root	B1	[
(iii)	Consider sign of $x - e^{-\frac{1}{2}x} - 2$ at $x = 2$ and $x = 2.5$, or equivalent	M1	

Mark Scheme

Page 7

(iv) Use the iterative formula $x_{n+1} = 2 + e^{-\frac{1}{2}x_n}$ correctly at least once, with $2 \le x_n \le 2.5$ M1

Obtain final answer 2.31

Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval (2.305, 2.315)

A1

[3]

Justify the given statement with correct calculations and argument

- 10 (i) State that the modulus of w is 1 State that the argument of w is $\frac{2}{3}\pi$ or 120° (accept 2.09, or 2.1) B1 [2]

 - (iii) State or imply the points are equidistant from the origin

 State or imply that two pairs of points subtend $\frac{2}{3}\pi$ at the origin, or that all three pairs subtend equal angles at the origin

 B1

 [2]

Syllabus

Paper

A1

[2]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

(iv)	Multiply $4 + 2i$ by w and use $i^2 = -1$	M1	
	Obtain $-(2+\sqrt{3})+(2\sqrt{3}-1)i$, or exact equivalent	A1	
	Divide $4 + 2i$ by w , multiplying numerator and denominator by the conjugate of w , or equivalent	M1	
	Obtain $-(2-\sqrt{3})-(2\sqrt{3}+1)i$, or exact equivalent	A1	[4]
	[Use of polar form of $4 + 2i$ can earn M marks and then A marks for obtaining exact $x + iy$ answers.] [SR: If answers only seen in polar form, allow B1+B1 in (i), B1 $\sqrt{+}$ B1 $\sqrt{-}$ in (ii), but A0 + A0 in (iv).]		