-	IBRIDGE INTERNATIONA General Certificate of vanced Subsidiary Level an	Education
HIGHER MATHE	MATICS	8719/03
MATHEMATICS		9709/03
Paper 3 Pure Ma	thematics 3 (P3)	October/November 2003
		1 hour 45 minutes
Additional materials:	Answer Booklet/Paper Graph paper	
Write your Centre number, o	List of Formulae (MF9) ONS FIRST Inswer Booklet, follow the instruct candidate number and name on	tions on the front cover of the Booklet. all the work you hand in.
If you have been given an A Write your Centre number, o Write in dark blue or black p You may use a soft pencil fo Do not use staples, paper c Answer all the questions. Give non-exact numerical a in degrees, unless a differen	List of Formulae (MF9) ONS FIRST Inswer Booklet, follow the instruct candidate number and name on ben on both sides of the paper. or any diagrams or graphs. lips, highlighters, glue or correction nswers correct to 3 significant fig nt level of accuracy is specified in	all the work you hand in. on fluid. ures, or 1 decimal place in the case of angle n the question.
If you have been given an A Write your Centre number, o Write in dark blue or black p You may use a soft pencil fo Do not use staples, paper c Answer all the questions. Give non-exact numerical a in degrees, unless a different At the end of the examination	List of Formulae (MF9) ONS FIRST Inswer Booklet, follow the instruc- candidate number and name on ben on both sides of the paper. or any diagrams or graphs. lips, highlighters, glue or corrections nswers correct to 3 significant fig	all the work you hand in. on fluid. ures, or 1 decimal place in the case of angle n the question. together.

This document consists of 4 printed pages.

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

[Turn over

- Solve the inequality $|2^x 8| < 5$. 1
- Expand $(2 + x^2)^{-2}$ in ascending powers of x, up to and including the term in x^4 , simplifying the 2 coefficients. [4]

2

3 Solve the equation

$$\cos\theta + 3\cos 2\theta = 2,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 180^{\circ}$.

4 The equation of a curve is

$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

where *a* is a positive constant.

(i) Express
$$\frac{dy}{dx}$$
 in terms of x and y. [3]

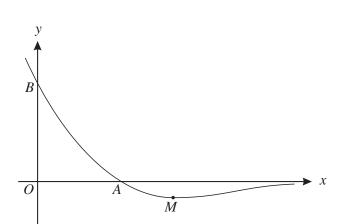
- (ii) The straight line with equation y = x intersects the curve at the point P. Find the equation of the tangent to the curve at *P*. [3]
- 5 (i) By sketching suitable graphs, show that the equation

$$\sec x = 3 - x^2$$

has exactly one root in the interval $0 < x < \frac{1}{2}\pi$. [2]

(ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \cos^{-1}\left(\frac{1}{3 - x_n^2}\right)$$


converges, then it converges to a root of the equation given in part (i). [2]

(iii) Use this iterative formula, with initial value $x_1 = 1$, to determine the root in the interval $0 < x < \frac{1}{2}\pi$ [3] correct to 2 decimal places, showing the result of each iteration.

[4]

[5]

[2]

The diagram shows the curve $y = (3 - x)e^{-2x}$ and its minimum point *M*. The curve intersects the *x*-axis at *A* and the *y*-axis at *B*.

- (i) Calculate the *x*-coordinate of *M*. [4]
- (ii) Find the area of the region bounded by OA, OB and the curve, giving your answer in terms of e.
- 7 The complex number *u* is given by $u = \frac{7+4i}{3-2i}$.
 - (i) Express u in the form x + iy, where x and y are real. [3]
 - (ii) Sketch an Argand diagram showing the point representing the complex number *u*. Show on the same diagram the locus of the complex number *z* such that |z u| = 2. [3]
 - (iii) Find the greatest value of $\arg z$ for points on this locus.

8 Let
$$f(x) = \frac{x^3 - x - 2}{(x - 1)(x^2 + 1)}$$

(i) Express f(x) in the form

$$A + \frac{B}{x-1} + \frac{Cx+D}{x^2+1},$$

where A, B, C and D are constants.

[5]

[3]

[5]

(ii) Hence show that $\int_{2}^{3} f(x) dx = 1.$ [4]

9709/03/O/N/03

9 Compressed air is escaping from a container. The pressure of the air in the container at time t is P, and the constant atmospheric pressure of the air outside the container is A. The rate of decrease of P is proportional to the square root of the pressure difference (P - A). Thus the differential equation connecting P and t is

$$\frac{\mathrm{d}P}{\mathrm{d}t} = -k\,\sqrt{(P-A)},$$

where *k* is a positive constant.

- (i) Find, in any form, the general solution of this differential equation. [3]
- (ii) Given that P = 5A when t = 0, and that P = 2A when t = 2, show that $k = \sqrt{A}$. [4]
- (iii) Find the value of t when P = A. [2]
- (iv) Obtain an expression for P in terms of A and t.
- 10 The lines *l* and *m* have vector equations

$$r = i - 2k + s(2i + j + 3k)$$
 and $r = 6i - 5j + 4k + t(i - 2j + k)$

respectively.

- (i) Show that *l* and *m* intersect, and find the position vector of their point of intersection. [5]
- (ii) Find the equation of the plane containing *l* and *m*, giving your answer in the form ax + by + cz = d. [6]

[2]