MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/33

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers' version	Syllabus	Pape	r
		GCE AS/A LEVEL – May/June 2011	9709	33	
1		e logarithm of a product, power or quotient ct linear equation, e.g. $(2x-1)\ln 5 = \ln 2 + x \ln 3$		M1* A1	
	Solve a linear Obtain answer	equation for x x = 1.09		A1	dep*) [4]
		equation to the form $a^x = b$ M1*, $obtain\left(\frac{25}{3}\right)^x = 10$ Al, u	se correct method	to	
	calculate value	e of x M1(dep*), obtain answer 1.09 A1.]			
2	Use correct qu	otient or product rule		M1	
	Obtain correct	derivative in any form, e.g. $-\frac{3\ln x}{r^4} + \frac{1}{r^4}$		A1	
	Equate derivat	ive to zero and solve for x an equation of the form $\ln x = a$,	where $a > 0$	M1	
	Obtain answer	$exp(\frac{1}{3})$, or 1.40, from correct work		A1	[4]
3		ration by parts and reach $k(1-x)e^{-\frac{1}{2}x} \pm k\int e^{-\frac{1}{2}x}dx$, or equiva	alent	M1	
	Obtain $-2(1 -$	$x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x}dx$, or equivalent		A1	
	Integrate and c	obtain $-2(1-x)e^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}$, or equivalent		A1	
	Use limits $x =$	0 and $x = 1$, having integrated twice		M1	
	Obtain the give	en answer correctly		A1	[5]
4	(i) Use tan(A	$\pm B$) formula correctly at least once and obtain an equation	in $tan\theta$	M1	
	Obtain a o	correct horizontal equation in any form		A1	
	Use tan60	$P^{\circ} = \sqrt{3}$ throughout		M1	
	Obtain the	e given equation correctly		A1	[4]
	(ii) Set $k = 3$ -	$\sqrt{3}$ and obtain $\tan^2 \theta = \frac{1}{11}$		B1	
	Obtain an	swer 16.8°		B1√	
		swer 163.2° swers outside the given interval. Treat answers in radians	(0 293 and 2 85) a	B1√	[3]
	misread.]	is note subjude the given interval. Theat answers in fadians	(0.290 unu 2.00) u	o u	

Р	age 5	Mark Scheme: Teachers' version	Syllabus	Pape	r
		GCE AS/A LEVEL – May/June 2011 9709		33	-
5 (i)	Substitute	$x = \frac{1}{2}$ and equate to zero, or divide, and obtain a contract of the second seco	orrect equation, e.g.		
	$\frac{1}{8}a + \frac{1}{4}b$	$+\frac{5}{2}-2=0$		B1	
		e x = 2 and equate result to 12, or divide and equate constant	remainder to 12	M1	
		correct equation, e.g. $8a + 4b + 10 - 2 = 12$ <i>a</i> or for <i>b</i>		A1 M1	
		= 2 and b = -3		A1	[5]
(ii)	Attempt of	division by $2x - 1$ reaching a partial quotient $\frac{1}{2}ax^2 + kx$		M1	
	Obtain qu [The M1	hadratic factor $x^2 - x + 2$ is earned if inspection has an unknown factor $Ax^2 + Bx + 2$	and an equation in A	A1	[2]
	and/or <i>B</i> ,	or an unknown factor of $\frac{1}{2}ax^2 + Bx + C$ and an equation in	B and/or C .]		
6 (i)		ognisable sketch of a relevant graph over the given range		B1	
		e other relevant graph and justify the given statement		B1	[2]
(ii)) Consider	the sign of $\cot x - (1 + x^2)$ at $x = 0.5$ and $x = 0.8$, or equivalent	ent	M1	
	Complete	the argument with correct calculated values		A1	[2]
(iii	i) Use the it	erative formula correctly at least once with $0.5 \le x_n \le 0.8$		M1	
		nal answer 0.62		A1	
		ficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or the interval (0.615, 0.625)	show there is a sign	A1	[3]
7 (i)	Use the q	uadratic formula, completing the square, or the substitutio	n z = x + iy to find a		
		use $i^2 = -1$ nal answers $-\sqrt{3} \pm i$, or equivalent		M1	[2]
	Obtain m	an answers $-\sqrt{5}\pm1$, of equivalent		A1	[2]
(ii)		the modulus of both roots is 2		B1	
	State that	the argument of $-\sqrt{3} + i$ is 150° or $\frac{5}{6}\pi$ (2.62) radians		B1√	
	State tha	t the argument of $-\sqrt{3} - i$ is -150° (or 210°) or $-\frac{5}{6}$	τ (–2.62) radians or		
	$\frac{7}{6}\pi$ (3.67)	') radians		B1√	[3]
(iii		an attempt to find the sixth power of a root		M1	
	•	at one of the roots satisfies $z^6 = -64$		A1	[^]
	verify the	at the other root satisfies the equation		A1	[3]

Page 6		ge 6	Mark Scheme: Teachers' version	Syllabus	Paper	·
		GCE AS/A LEVEL – May/June 2011 9709			33	
8	(i)	Obtain co Equate de Obtain 2	funct and chain rule prrect derivative in any form, e.g. $15 \sin^2 x \cos^3 x - 10 \sin^4 x$ privative to zero and obtain a relevant equation in one trigono $\tan^2 x = 3$, $5 \cos^2 x = 2$, or $5 \sin^2 x = 3$ privative to zero and a trigonometric derivative to zero and a trigonometric derivative to zero.		M1 A1 M1 A1 A1	[5]
	(ii)	Express in Obtain ±	mply $du = -\sin x dx$, or $\frac{du}{dx} = -\sin x$, or equivalent integral in terms of u and du $\int 5(u^2 - u^4) du$, or equivalent and use limits $u = 1$ and $u = 0$ (or $x = 0$ and $x = \frac{1}{2}\pi$)		B1 M1 A1 M1	
		Obtain an	swer $\frac{2}{3}$, or equivalent, with no errors seen		A1	[5]
9	(i)	State or in	mply $\frac{dx}{dt} = k(10 - x)(20 - x)$ and show $k = 0.01$		B1	[1]
	(ii)	Carry ou equivalen Obtain A Integrate Integrate Evaluate $a \ln(10 -$ Obtain an	variables correctly and attempt integration of at least one side t an attempt to find A and B such that $\frac{1}{(10-x)(20-x)} =$ t = $\frac{1}{10}$ and $B = -\frac{1}{10}$, or equivalent and obtain $-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x)$, or equivalent and obtain term 0.01t, or equivalent a constant, or use limits $t = 0$, $x = 0$, in a solution containing x), $b\ln(20-x)$ and ct aswer in any form, e.g. $-\frac{1}{10}\ln(10-x) + \frac{1}{10}\ln(20-x) = 0.01t$ of logarithms to correctly remove logarithms	$= \frac{A}{10-x} + \frac{B}{20-x}, \text{ or}$	M1 A1 A1√ A1	
			e and obtain $x = 20(\exp(0.1t) - 1)/(2\exp(0.1t) - 1)$, or equivalent	llent	MI A1	[9]
	(iii)	State that	x approaches 10		B1	[1]

Page 7		ge 7	Mark Scheme: Teachers' version	Syllabus	Pape	r
			GCE AS/A LEVEL – May/June 2011	9709	33	
10	(i)	EITHER:	Express general point of <i>l</i> or <i>m</i> in component form, e.g. $(\mu, 2 + 2\mu, 6 - 2\mu)$ Equate at least two pairs of components and solve for λ or μ (possible answers for λ	or for μ	B1 M1	
			μ are 0, $2\frac{1}{4}$, $-4\frac{1}{2}$) Verify that all three component equations are not satisfied	ed	A1 A1	
		OR:	State a relevant scalar triple product, e.g. $(2\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}) \cdot ((\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}))$ Attempt to use the correct method of evaluation Obtain at least two correct simplified terms of the		B1 M1	
			expansion of the triple product or of the corresponding d e.g4, -8, -15 Obtain correct non-zero value, e.g27, and state th intersect		A1 t A1	[4]
	(ii)	Carry out the correct process for evaluating scalar product of direction vectors for l and m Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result Obtain answer 47.1° or 0.822 radians				[3]
	(iii)	EITHER:	Use scalar product to obtain $a - b + 2c = 0$ Obtain $a + 2b - 2c = 0$, or equivalent, from a sc subtracting two point equations obtained from points on ratio, e.g. $a : b$ Obtain $a : b : c = -2 : 4 : 3$, or equivalent Substitute coordinates of a point on <i>m</i> and values for <i>a</i> equation and evaluate <i>d</i>	<i>m</i> , and solve for one	M1* A1 M1(0	dep*)
		OR1:	Obtain answer $-2x + 4y + 3z = 26$, or equivalent Attempt to calculate vector product of direction vectors of Obtain two correct components Obtain $-2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, or equivalent Form a plane equation and use coordinates of a relevant Obtain answer $-2\mathbf{x} + 4\mathbf{y} + 2\mathbf{z} = 26$ or equivalent			lep*)
		OR2:	Obtain answer $-2x + 4y + 3z = 26$, or equivalent Form a two-parameter plane equation using relevant vec State a correct equation e.g. $\mathbf{r} = 2\mathbf{j} + 6\mathbf{k} + \mathbf{s}(\mathbf{i} - \mathbf{j} + 2\mathbf{k}) +$ State three correct equations in x, y, z, s and t Eliminate s and t Obtain answer $-2x + 4y + 3z = 26$, or equivalent		A1 M1* A1 A1 M1(0 A1	lep*) [5]