UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9709 MATHEMATICS

9709/63

Paper 63, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	63

			T
1	$\frac{{}^{13}\mathrm{C}_{3} \times {}^{39}\mathrm{C}_{4}}{{}^{52}\mathrm{C}_{7}}$	M1 M1	Using combinations with attempt to evaluate product of 2 in num and only 1 in denom Correct numerator or denominator
=	= 0.176	A1	Correct answer
	OR P(RRR) = $\frac{13}{52} \times \frac{12}{51} \times \frac{11}{50} \times \frac{39}{49} \times \frac{38}{48} \times \frac{37}{47} \times \frac{36}{46} \times^7 C_3$ = 0.176	M1 M1 A1 [3]	OR Multiplying 3 unequal red probs with 4 unequal non-red probs Multiplying a probability by ⁷ C ₃ Correct answer
2	(i) $\bar{x} = 130 - 287/82$ = 126.5 (126, 127) cm	M1 A1 [2]	287/82 seen added or subt to 130 OR 287 seen added or subt to 82 × 130 Correct answer
	(ii) $\frac{\Sigma(x-130)^2}{82} - (-3.5^2) = 6.9^2$	M1	$6.9^2 + (\pm \text{their coded mean})^2$ seen or implied
	$\Sigma(x-130)^2 = 4908.5 \text{ cm } (4910)$	A1 [2]	correct answer
3	(i) $P(>5) = {}^{7}C_{6}(0.6)^{6}(0.4) + (0.6)^{7}$ = 0.1306 + 0.02799 = 0.159	M1 A1 [2]	Summing 2 or 3 binomial probs of the form ${}^{7}C_{r}(0.6)^{r}(0.4)^{7-r}$ Correct answer
((ii) $P(bark) = P(park, bark) + P(not park, bark)$ = $0.6 \times 0.35 + 0.4 \times 0.75$ = 0.51	M1 A1 [2]	Summing two appropriate 2-factor probabilities Correct answer
	(iii) Variance (number of times) = 7.2	B1 [1]	Correct final answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	63

4 (i) ends cola, $5!2!2! = 30$ ends green (e.g., $5!3!2! = 10$ ends orange juice, $5!3!2! = 10$ total = 50 ways OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ $= \frac{5}{21}$ OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ Al Correct answer OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ Al Correct answer (a) OR Considering all three options Correct answer (a) (ii) colas together, no restrictions, $5!2!2!$ $= 30 \text{ ways}$ colas together, no restrictions, $5!2!2!$ $= 12 \text{ ways}$ $30 - 12 = 18 \text{ ways}$. OR, Attempt to list OR, Attempt to list M1A1					
ends orange juice, $5!3!2! = 10$ total = 50 ways OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ $= \frac{5}{21}$ OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ A1 Correct fraction Correct answer (ii) colas together, no restrictions, $5!2!2!$ = 30 ways colas together and green tea together, $4!/2!$ A1 Considering all colas together, or $5!$ seen Correct answer A1 Correct answer A1 Correct answer A1 Correct answer A2 Correct answer A3 Correct answer A4 Correct answer A5 Correct answer A6 Correct answer A7 Correct answer A8 Correct answer A9 Correct answer A1 Correct answer A1 Correct answer A2 Correct answer A3 Correct answer A4 Correct answer A5 Correct answer A6 Correct answer A7 Correct answer A8 Correct answer A9 Correct answer A1 Correct answer A1 Correct answer A2 Correct answer A3 Correct answer A4 Correct answer A5 Correct answer A6 Correct answer A7 Correct answer A8 Correct answer A9 Correct answer A1 Correct answer A1 Correct answer A1 Correct answer A2 Correct answer A3 ways for colas and orange juice A4 OR, 2 Considering all colas together, or $5!$ seen A6 Correct answer A7 Correct answer A8 Correct answer A8 Correct answer A9 Correct answer A1 Correct answer A1 Correct answer A1 Correct answer A2 Correct answer A3 ways for colas and orange juice A4 OR, 2 Orandering green teas not together A4 OR, 2 Orandering all colas together, or $3!$ seen A1 Summing two 2-factor probabilities A1 Correct answer legit obtained A1 Correct answer legit obtained A1 Correct answer legit obtained A1 Correct final answer A1 Correct final answer A1 Correct final answer A2 Correct final answer A3 Correct answer legit obtained A4 Correct final answer A5 Correct final answer A6 Correct answer legit obtained A7 Correct final answer A8 Correct answer legit obtained A9 Correct final answer A1 Correct final answer A1 Correct final answer A1 Correct final answer A1 Correct answer	4	(i)		M1	Considering all three options
total = 50 ways OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ $= \frac{5}{21}$ A1 Correct answer OR Considering all three options $= \frac{5}{21} \times \frac{7!}{32!2!} = 50 \text{ ways}$ A1 Correct answer $= 30 \text{ ways}$ colas together, no restrictions, 5!/2!2! $= 30 \text{ ways}$ colas together and green tea together, 4!/2! $= 12 \text{ ways}$ $30 - 12 = 18 \text{ ways}$ $41 \text{ OR}_1 \text{ 10 or more, 12 or more correct}$ $18 \text{ correct final answer}$ $41 \text{ 4 or more, 15 or more correct}$ 18 correct $18 \text{ correct final answer}$ $5 \text{ (i) } P(2) = P(0.2) + P(2.0)$ $= 6/10 \times 3/7 + 3/10 \times 4/7$ $= 30/70 = 3/7 \text{ AG}$ $19 \text{ (ii) } E(X) = 13/7 \text{ Var}(X) = 120/70 + 208/70 + 108/70 - (13/7)^2$ $= 2.78$ 10 M1 $10 \text{ Correct answer}$ $10 \text{ Considering all colas together, or 5! seen}$ $11 \text{ Correct final answer}$ $12 \text{ OR}_1 \text{ 10 or more, 12 or more correct}$ $18 \text{ correct final answer}$ $18 \text{ correct final answer}$ $19 \text{ Correct final answer}$ $19 \text{ Correct answer legit obtained}$ $19 \text{ Correct values for ry } X$ $10 \text{ Correct values for ry } X$ $10 \text{ Correct values for ry } X$ $10 \text{ Correct value for ry } X$ $10 \text{ Correct values for ry } X$ $10 \text{ Correct values for more correct}$ $10 Value value of the mean of the mea$				A 1	Any one ention correct
OR P(ends same) = $\frac{3}{7} \times \frac{2}{6} + \frac{2}{7} \times \frac{1}{6} + \frac{2}{7} \times \frac{1}{6}$ $= \frac{5}{21}$ $\frac{5}{21} \times \frac{7!}{32!2!} = 50 \text{ ways}$ Al Correct fraction Correct answer [3] (ii) colas together, no restrictions, 5!/2!2! $= 30 \text{ ways}$ colas together and green tea together, 4!/2! $= 12 \text{ ways}$ $30 - 12 = 18 \text{ ways}.$ OR ₁ Attempt to list OR ₂ $3 \times \frac{4 \times 3}{2} = 18$ MI OR Considering all three options Correct answer Correct final answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer Correct answer Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Considering all colas together, or 5! seen Correct answer OR ₂ Or			- ·		1 -
			total – 30 ways	AI	Correct answer
			3 2 2 1 2 1	3.61	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			OR P(ends same) = $- \times - + - \times - + - \times - = 7 + 6 + 7 + 6 + 7 + 6$	MI	OR Considering all three options
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$=\frac{1}{21}$	A1	Correct fraction
(ii) colas together, no restrictions, $5!/2!2!$ and 30 ways colas together and green tea together, $4!/2!$ and 30 ways $30-12=18$ ways. OR1 Attempt to list OR2 $3 \times \frac{4 \times 3}{2} = 18$ OR3 $3 \times \frac{4 \times 3}{2} = 18$ M1 OR4 Considering all colas together, or $5!$ seen Correct answer Correct answer Correct final answer Correct final answer OR2 $3 \times \frac{4 \times 3}{2} = 18$ M1 OR3 Considering all colas tog and all green tea tog, or $4!$ seen Correct answer Correct final answer OR4 10 or more, 12 or more correct 18 correct 18 correct OR5 Correct final answer OR6 Correct final answer OR7 Correct final answer OR8 Considering green teas not together, or $3!$ seen 3 ways for colas and orange juice Considering green teas not together 4 × 3 or $(4 \times 3)/2$ Correct final answer [5] To rect tanswer legit obtained Correct answer legit obtained Correct answer legit obtained Correct answer legit obtained To rect values for rv X Correct probabilities Correct probabilities Correct values for rv X Correct probabilities Correct probabilities Correct probabilities Correct values for rv X Correct probabilities Correct probabiliti					
(ii) colas together, no restrictions, $5!/2!2!$ and 30 ways colas together and green tea together, $4!/2!$ and 30 ways $30-12=18$ ways. OR1 Attempt to list OR2 $3 \times \frac{4 \times 3}{2} = 18$ OR3 $3 \times \frac{4 \times 3}{2} = 18$ M1 OR4 Considering all colas together, or $5!$ seen Correct answer Correct answer Correct final answer Correct final answer OR2 $3 \times \frac{4 \times 3}{2} = 18$ M1 OR3 Considering all colas tog and all green tea tog, or $4!$ seen Correct answer Correct final answer OR4 10 or more, 12 or more correct 18 correct 18 correct OR5 Correct final answer OR6 Correct final answer OR7 Correct final answer OR8 Considering green teas not together, or $3!$ seen 3 ways for colas and orange juice Considering green teas not together 4 × 3 or $(4 \times 3)/2$ Correct final answer [5] To rect tanswer legit obtained Correct answer legit obtained Correct answer legit obtained Correct answer legit obtained To rect values for rv X Correct probabilities Correct probabilities Correct values for rv X Correct probabilities Correct probabilities Correct probabilities Correct values for rv X Correct probabilities Correct probabiliti			$\frac{3}{21} \times \frac{7!}{2!2!2!} = 50 \text{ ways}$	A1	Correct answer
(ii) colas together, no restrictions, $5!/2!2!$ and 3 ways colas together and green tea together, $4!/2!$ and 3 ways colas together and green tea together, $4!/2!$ and 3 ways $30-12=18$ ways. OR ₁ Attempt to list OR ₂ $3 \times \frac{4 \times 3}{2} = 18$ OR ₂ $3 \times \frac{4 \times 3}{2} = 18$ MI OR ₃ $3 \times \frac{4 \times 3}{2} = 18$ MI OR ₄ Considering all colas tog and all green tea tog, or $4!$ seen Correct answer Correct answer Correct answer Correct final answer OR ₂ 10 or more, 12 or more correct 14 or more, 16 or more correct 16 correct 18 correct OR ₂ $3 \times \frac{4 \times 3}{2} = 18$ MI OR ₃ Considering all colas together, or $5!$ seen Correct answer Correct answer OR ₁ 10 or more, 12 or more correct 14 or more, 16 or more correct 16 or mo			21 3:2:2!	[2]	
= 30 ways colas together and green tea together, $4!/2!$ $M1$ $Correct answer $ $Considering all colas tog and all green tea tog, or 4! seen A1 A1 A1 A1 A1 A1 A1 A1$				[3]	
$ \begin{array}{c} = 30 \text{ ways} \\ \text{colas together and green tea together, } 4!/2! \\ = 12 \text{ ways} \\ 30-12=18 \text{ ways.} \\ \hline $		(ii)	colas together, no restrictions, 5!/2!2!	M1	Considering all colas together, or 5! seen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		` /	_	A1	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			colas together and green tea together, 4!/2!	M1	Considering all colas tog and all green tea tog,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
OR ₁ Attempt to list $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·		
$ \textbf{OR}_2 \ 3 \times \frac{4 \times 3}{2} = 18 $ $ \textbf{M1}$ $ \textbf{OR}_2 \ \text{Considering all colas together, or } 3! \ \text{ seen} $ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A4}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A7}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A7}$ $ \textbf{A7}$ $ \textbf{A8}$ $ \textbf{A9}$			30 - 12 = 18 ways.	Al	Correct final answer
$ \textbf{OR}_2 \ 3 \times \frac{4 \times 3}{2} = 18 $ $ \textbf{M1}$ $ \textbf{OR}_2 \ \text{Considering all colas together, or } 3! \ \text{ seen} $ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A4}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A7}$ $ \textbf{A1}$ $ \textbf{A1}$ $ \textbf{A2}$ $ \textbf{A3}$ $ \textbf{A3}$ $ \textbf{A4}$ $ \textbf{A5}$ $ \textbf{A5}$ $ \textbf{A7}$ $ \textbf{A7}$ $ \textbf{A8}$ $ \textbf{A9}$			OR. Attempt to list	Μ1Δ1	OR. 10 or more 12 or more correct
$ \textbf{OR}_2 \ 3 \times \frac{4 \times 3}{2} = 18 $ $ \textbf{M1} \qquad \textbf{OR}_2 \ \text{Considering all colas together, or } 3! \ \text{seen} $ $ \textbf{A1} \qquad \textbf{A1} \qquad \textbf{A1} \qquad \textbf{3 ways for colas and orange juice} $ $ \textbf{Considering green teas not together} \qquad \textbf{4} \times 3 \ \text{or } (4 \times 3)/2 $ $ \textbf{Correct final answer} $ $ \textbf{5} \qquad \textbf{(i)} \textbf{P(2)} = \textbf{P(0,2)} + \textbf{P(2,0)} \\ = 6/10 \times 3/7 + 3/10 \times 4/7 \\ = 30/70 = 3/7 \ \textbf{AG} $ $ \textbf{M1} \qquad \textbf{Summing two } 2\text{-factor probabilities} $ $ \textbf{Correct answer legit obtained} $ $ \textbf{Correct answer legit obtained} $ $ \textbf{Correct probs} $ $ \textbf{[2]} $ $ \textbf{(iii)} \textbf{E(X)} = 13/7 \\ \textbf{Var(X)} = 120/70 + 208/70 + 108/70 - (13/7)^2 \\ = 2.78 \qquad \textbf{A1} $ $ \textbf{[3]} $ $ \textbf{(iv)} \textbf{P(A2} \ \ \textbf{Sum } 2) = \frac{3/10 \times 4/7}{30/70} $ $ \textbf{M1} \qquad \textbf{Correct numerator with a } 0 < \text{denom} < 1 \\ \textbf{Correct answer} $			OK Attempt to list		
$ \textbf{OR}_2 \ 3 \times \frac{4 \times 3}{2} = 18 $ $ \textbf{M1} $ $ \textbf{A1} $ $ \textbf{A2} $ $ \textbf{A1} $ $ \textbf{A3} $ $ \textbf{A4} $ $ \textbf{A1} $ $ \textbf{Correct final answer} $ $ \textbf{Correct answer legit obtained} $ $ \textbf{Correct probabilities} $ $ \textbf{Correct tanswer legit obtained} $ $ \textbf{Correct probabilities} $ $ \textbf{Correct probabilities} $ $ \textbf{Correct probabilities} $ $ \textbf{Correct tanswer legit obtained} $ $ \textbf{B1} $ $ \textbf{B1} $ $ \textbf{Correct probabilities} $ $ \textbf{B1} $ $ \textbf{M1} $ $ \textbf{Correct probabilities} $ $ \textbf{M1} $ $ \textbf{Correct probabilities} $ $ \textbf{M2} $ $ \textbf{M3} $ $ \textbf{M3} $ $ \textbf{Correct inumerator with a 0 < denom < 1 } $ $ \textbf{M4} $ $ \textbf{Correct numerator with a 0 < denom < 1 } $ $ \textbf{A1} $ $ \textbf{Correct numerator with a 0 < denom < 1 } $ $ \textbf{Correct answer} $					
A1 A1 A2 A3 or (4 × 3)/2 Correct final answer 5 (i) $P(2) = P(0,2) + P(2,0)$ $= 6/10 \times 3/7 + 3/10 \times 4/7$ $= 30/70 = 3/7$ AG (ii) $\frac{x}{P(X=x)} = \frac{0}{24/70} = \frac{4}{30/70} = \frac{6}{30/70}$ $= 2.78$ A1 A1 A2 Or (4 × 3)/2 Correct final answer Summing two 2-factor probabilities Correct answer legit obtained Correct values for rv <i>X</i> Correct probabilities Correct values for rv <i>X</i> Correct probabilities E(x) = 13/7 Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^2 A1 Subtracted numerically, no extra division Correct final answer (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ $= 0.4$ M1 Correct numerator with a 0 < denom < 1 Correct answer					
A1 A1 A2 A3 or (4 × 3)/2 Correct final answer 5 (i) $P(2) = P(0,2) + P(2,0)$ $= 6/10 \times 3/7 + 3/10 \times 4/7$ $= 30/70 = 3/7$ AG (ii) $\frac{x}{P(X=x)} = \frac{0}{24/70} = \frac{4}{30/70} = \frac{6}{30/70}$ $= 2.78$ A1 A1 A2 Or (4 × 3)/2 Correct final answer Summing two 2-factor probabilities Correct answer legit obtained Correct values for rv <i>X</i> Correct probabilities Correct values for rv <i>X</i> Correct probabilities E(x) = 13/7 Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^2 A1 Subtracted numerically, no extra division Correct final answer (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ $= 0.4$ M1 Correct numerator with a 0 < denom < 1 Correct answer			$\frac{4\times 3}{1}$	M1	OP Considering all color together, or 21 seen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$OR_2 3 \times \frac{1}{2} = 18$	IVI I	OK ₂ Considering an colas together, of 3: seen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				A1	3 ways for colas and orange juice
Summing two 2-factor probabilities Summing two 2-factor probabilities					
5 (i) $P(2) = P(0,2) + P(2,0)$ $= 6/10 \times 3/7 + 3/10 \times 4/7$ $= 30/70 = 3/7$ AG (ii) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Correct final answer
Signature Sig					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	(i)	P(2) = P(0,2) + P(2,0)	M1	Summing two 2-factor probabilities
(ii) $\frac{x}{P(X=x)} \frac{0}{24/70} \frac{2}{30/70} \frac{4}{13/70} \frac{6}{3/70}$ B1 Correct values for rv <i>X</i> Correct probs [2] (iii) $E(X) = 13/7$ $Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^2$ $= 2.78$ B1 Using variance formula correctly with mean ² subtracted numerically, no extra division Correct final answer [3] (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ $= 0.4$ M1 Correct numerator with a $0 < denom < 1$ A1 Correct answer					
(ii)			= 30/70 = 3/7 AG		Correct answer legit obtained
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				[2]	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ii)			
P(X = x) 24/70 30/70 13/70 3/70 B1 Correct probs [2] (iii) E(X) = 13/7		()	x 0 2 4 6	B1	Correct values for rv X
(iii) $E(X) = 13/7$ $Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^2$ $= 2.78$ B1ft M1 Using variance formula correctly with mean ² subtracted numerically, no extra division Correct final answer [3] (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ M1 Correct numerator with a 0 < denom < 1 A1 Correct answer			P(X = x) 24/70 30/70 13/70 3/70	B1	Correct probs
$Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^{2}$ $= 2.78$ $M1$ $A1$ $[3]$ Using variance formula correctly with mean ² subtracted numerically, no extra division Correct final answer $[3]$ $M1$ $Correct numerator with a 0 < denom < 1$ $= 0.4$ $A1$ $Correct answer$				[2]	
$Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^{2}$ $= 2.78$ $M1$ $A1$ $[3]$ Using variance formula correctly with mean ² subtracted numerically, no extra division Correct final answer $[3]$ $M1$ $Correct numerator with a 0 < denom < 1$ $= 0.4$ $A1$ $Correct answer$		(;;;)	E(Y) = 13/7	R1ft	
$= 2.78$ A1 subtracted numerically, no extra division Correct final answer (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ $= 0.4$ M1 Correct numerator with a $0 < denom < 1$ A1 Correct answer		(111)			Using variance formula correctly with mean ²
$= 2.78$ A1 Correct final answer [3] (iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ $= 0.4$ M1 Correct numerator with a 0 < denom < 1 A1 Correct answer			14 (21) 120//0 + 200//0 + 100//0 - (15//)	1411	, ·
(iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$			= 2.78	A1	
= 0.4 A1 Correct answer					
= 0.4 A1 Correct answer					
= 0.4 A1 Correct answer		(iv)	$P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{}$	M1	Correct numerator with a 0 < denom < 1
			= 0.4		Correct answer
				[2]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	63

6 (i) for X: Median = 0.825 cm IQ range = 0.019 cm $(0.833 - 0.814)$	B1 B1 [2]	Correct median Correct IQ range
(ii) $q = 4$ r = 2 SR $q = 0.824$ and $r = 0.852$	B1 B1 [2] B1	Must be 4 and 2 not 3 and 1
(iii)	B1	Labels <i>X</i> , <i>Y</i> and length/cm, linear scale from 0.80 to 0.87 and both on one diagram
X	B1ft	Correct median and quartiles for <i>X</i> ft theirs must be a box
	B1ft	Correct median and quartiles for <i>Y</i> ft theirs must be a box
0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 length in cm	B1 [4]	Whiskers correct no line through middle
(iv) Y has longer insects on average Y has larger range	B1 B1 [2]	Correct statement about lengths Correct statement about spreads
7 (i) $0.431 = \frac{135 - \mu}{\sigma}$	B1	One ±z-value correct, accept 0.430
$-0.842 = \frac{127 - \mu}{\sigma}$	B1 M1	A second $\pm z$ -value correct Solving two equations relating μ , σ , 135, 127 and their z -values (must be z -values)
$\sigma = 6.29$ $\mu = 132$	A1 A1 [5]	Correct answer accept 6.28 Correct answer
(ii) $P(X < 145) = P\left(z < \frac{145 - 132.3}{6.284}\right)$ = $P(z < 2.023)$ = 0.978	M1 M1 A1 [3]	Standardising no sq rt no cc Correct use of normal tables Answer rounding to 0.978 or 0.979
(iii) $p = 1/3$ P(at least 2) = 1 – P(0, 1) = 1 – [(2/3) ⁸ + ⁸ C ₁ ×(1/3) ¹ (2/3) ⁷]	M1	Binomial expression with powers summing to 8 and ${}^{8}C_{\text{something.}}$ (any p) Correct unsimplified expression
= 0.805	A1 [3]	Answer rounding to 0.805