

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
	· · · · · · · · · · · · · · · · · · ·

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	71

1 $H_0: \mu = 18.5$	B1	-	Both hypotheses correct
1	DI		Both hypotheses correct
$H_1: \mu < 18.5$			
Test statistic $z = \frac{18.1 - 18.5}{(1.1/\sqrt{20})}$	M1		Standardising, must have $\sqrt{20}$
$=-1.626$ CV $z = \pm 1.96$	A1 M1		For correct z Correct comparison with correct CV or finding area on LHS of –1.626 and comparing with 2.5 % (OR comparison with 2.241 oe if one-tail test set up)
Not enough evidence to support the claim that fingers are smaller.	A1ft	[5]	Correct conclusion must ft their CV and their z. No contradictions
2 (i) $\hat{\mu} = 227.(1)$	B1	[J]	Correct mean
2 (1) $\mu = 227.(1)$	B1		2.17 seen
	~ .		
$5 = 2.17 \times \sqrt{\frac{\hat{\sigma}^2}{50}}$	M1		Solving an equation with 5 or 10 on the LHS
			and some z value $\times \frac{\hat{\sigma}}{\sqrt{n}}$ on the RHS
$\hat{\sigma}^2 = 265 \text{ or } 266$	A1	[4]	Correct answer
(ii) 4 = 2.17 × 16.3	D16		Comment and the Comment of the Comme
(ii) $4 = 2.17 \times \frac{16.3}{\sqrt{n}}$	B1ft		Correct equation ft their wrong z if the same
,	M1		as in part (i) and their σ Solving an equation with their z and σ , and width 4 or 8
n = 78	A1		Correct answer (whole number)
		[3]	
3 (i) $\lambda = 2$	B1		Correct mean (used)
$P(X > 3) = 1 - P(0, 1, 2, 3)$ $= 1 - e^{-2} \left(1 + 2 + \frac{2^2}{2} + \frac{2^3}{3!} \right)$	M1		Poisson 1 – P(0,1,2,3) or P(0,1,2) or P(1,2,3)
= 1 - 0.857 = 0.143	A1	[3]	Correct answer
(ii) $\lambda = 16/3$	B1	r.y.	Correct new mean
$P(7) = e^{-16/3} \left(\frac{(16/3)^7}{7!} \right)$	M1		P(7) using a different mean from (i)
= 0.118	A1	[3]	Correct final answer
(iii) $X \sim N(160, 160)$	B1	ו _ר ז	Correct mean and variance
	M1		Standardising attempt with or without cc must have sq rt
$P(X < 137) = P\left(z < \frac{136.5 - 160}{\sqrt{160}}\right)$	M1		Cc of 136.5 or 137.5 and area < 0.5
= P(z < -1.858)			
= 1 - 0.9684 = 0.0316	A1	[4]	Correct answer
		[4]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	71

4	(i)	$H_0: p = 0.36$	B1		Both hypotheses correct
7	(1)	$H_1: p > 0.36$	Di		Both hypotheses correct
		11, p = 0.50			
		$P(7) = {}^{8}C_{7} \times (0.36)^{7} (0.64)^{1} = 0.00401$	M1		Evaluating P(7) or P(8)
		$P(7) = {}^{8}C_{7} \times (0.36)^{7} (0.64)^{1} = 0.00401$ $P(8) = (0.36)^{8} = 0.000282$	A1		Correct answer for both
		$\Sigma P = 0.00429 < 0.05$	M1		Comparing their prob sum to 0.05 oe
		21 0.00.25 0.00			r. g. r
		Accept driving instructor's claim	B1		Correct conclusion ewo no contradictions
				[5]	
	(ii)	Type I error	B1		Correct answer
	` /	$P(6) = {}^{8}C_{6} \times (0.36)^{6} (0.64)^{2} = 0.02496$	M1		Evaluating P(6)
		$P(5) = {}^{8}C_{5} \times (0.36)^{5} (0.64)^{3} = 0.08876,$	B1		Correct P(5) and showing this is not in the CR
		> 0.05			either by $\Sigma P > 0.05$ or $P(5) > 0.05$
					,
		P(Type I error) = 0.0292 or 0.0293	A1		Correct answer
					NB Marks for part (ii) may be awarded in part
					(i) but not vice versa.
				[4]	
5	(i)	$\int_{3}^{6} k(6t - t^{2}) dt = 1$	M1		For equating to 1 and a sensible attempt to
3	(1)		1411		integrate
		$k[3t^2-t^3/3]_3^6=1$			micgian
		L 3 *	A 1		Compatints and a smart limits
		k([108 - 216/3] - [27 - 9]) = 1	A1		Correct integration and correct limits
		k = 1/18 AG	A1		Given answer correctly obtained
		N 1/10/1G	711	[3]	Given unswer correctly commed
	· · · · · · · · · · · · · · · · · · ·	\(\begin{picture} 6 & (6.2 & 3) & 1 \end{picture} \)			
	(11)	$mean = \int_3^6 k(6t^2 - t^3)dt$	M1		Attempt to evaluate the integral of $tf(t)$ (t or x)
		Γ 4 76			
		$=\left[k(2t^3-\frac{t^4}{4})\right]_{3}^{6}$			
		$\begin{bmatrix} k(2i & 4) \end{bmatrix}_2$	A1		Correct integral and correct limits (condone
		= k(432 - 324) - k(54 - 81/4)			loss of k)
					,
		$=\frac{33}{9}$ (4.13)			
		8	A1		Correct answer
				[3]	
	(222)	$\int_{-1}^{6} \frac{1}{4} (64 + 4^2) d4$			
	(111)	$\int_5^6 k(6t-t^2)dt$	M1		Attempt to evaluate the integral between 5 and
		$\lceil 3 \rceil^6$			6 oe
		$= k \left[3t^2 - \frac{t^3}{3} \right]_5^6 = k \left(36 - \frac{100}{3} \right)$			
		3 3 /			
		4			
		$=\frac{4}{27}$ (0.148)	A1		Correct answer
		27	***	[2]	
	(iv)	the area on the left is > 0.75	M1		sensible reason
	(11)	or (iii) is < 0.25	1411		Sensione reason
		UQ is less than 5	A1ft		ft their (iii)
		O 2 10 1000 tiluii 5	71111		SR B1ft correct but 0.25/0.75 implied
				[2]	Sit Diff coffeet out 0.25/0.75 implied
			<u> </u>	[-]	<u> </u>

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009		71

6	(i)	$T_1 + T_2 + T_4 - T_3 \sim N(-0.95, 4.345)$	M1	Attempt to find mean and var of $T_1 + T_2 + T_4 - T_3$
				oe
			B1	Correct mean $(3.75 + 3.1 + 3.2 - 11)$
			A1	Correct variance
		$P[(T_1 + T_2 + T_4 - T_3) > 0]$	M1	Finding P their $[(T_1 + T_2 + T_4 - T_3) > 0]$ oe
		$= P\left(z > \frac{00.95}{\sqrt{4.345}}\right) = P(z > 0.4557)$ $= 1 - 0.0.6758$	M1	Standardising (appropriate variance involving all 4) and area <0.5
		= 1 - 0.0.0738 = 0.324	A1	Correct answer
			[6]	C 511 C 61 G 11 C 1
	(ii)	$\overline{X} \sim N(3.1, 0.785/6)$	M1	Normal distribution mean 3.1, var 0.785/6, can be
	()	11 1 (6.12, 61, 66, 6)		implied
		$\mathbf{p}(\overline{\mathbf{v}} \leq 4) - \mathbf{p} \left(-4 - 3.1 \right)$	3.61	OR N(18.6, 4.71) if working with totals
		$P(\overline{X} < 4) = P\left(z < \frac{4 - 3.1}{\sqrt{0.785/6}}\right)$	M1	Standardising with sq rt
		((0.70270)		OR $(24 - 18.6)/\sqrt{4.71}$
		= P(z < 2.488)		no mixed methods
		= 0.994	A1	Correct answer
			[3]	Contect answer

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009		72

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
MR PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)
	Premature Approximation (resulting in basically correct work that is insufficiently

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	72

1	U · u = 1 746	B1		Path hymothogog garmant
1	$H_0: \mu = 1.746$	DI		Both hypotheses correct
	$H_1: \mu \neq 1.746$			
	Test statistic $z = \frac{1.765 - 1.746}{0.149 / \sqrt{230}}$	M1		Standardising, must have $\sqrt{230}$
	$\pm -1.93(4)$ CV $z = \pm 1.645$	A1 M1		For correct z Correct comparison with correct CV or finding area on RHS of their z and comparing with 0.05 (must be 0.05) OR if one tail test comparison with 1.282 oe
	Evidence of a difference	A1ft	[5]	Correct conclusion must ft their CV and their z. No contradictions
2	(i) $\hat{\mu} = 227.(1)$	B1	(- <u>)</u>	Correct mean
-	(-) p 22.1(1)	B1		2.17 seen
	$5 = 2.17 \times \sqrt{\frac{\hat{\sigma}^2}{50}}$	M1		Solving an equation with 5 or 10 on the LHS
				and some z value $\times \frac{\hat{\sigma}}{\sqrt{n}}$ on the RHS
	$\hat{\sigma}^2 = 265 \text{ or } 266$	A1	[4]	Correct answer
	(ii) $4 = 2.17 \times \frac{16.3}{\sqrt{n}}$	B1ft		Correct equation ft their wrong z if the same as in part (i) and their σ
		M1		Solving an equation with their z and σ , and width 4 or 8
	n = 78	A1	[3]	Correct answer (whole number)
3	(i) $\lambda = 4.5$	B1	(- J	Correct mean (used)
	P(at most 2) = P(0, 1, 2)			
	$=e^{-4.5}\left(1+4.5+\frac{4.5^2}{2!}\right)$	M1		Poisson (0, 1, 2) or P(0, 1) or P(1, 2)
	= 0.174	A1	[3]	Correct answer
	(ii) $\lambda = 7.5$	B1		New mean (1.5 + 6) used
	$P(6) = e^{-7.5} \left(\frac{7.5^6}{6!} \right)$	M1		P(6) using a different mean from (i)
	= 0.137	A1	[3]	Correct answer
	(iii) $X \sim N(90, 90)$	B1	.157.	Correct mean and variance
		M1		Standardising attempt with or without cc must
	$P(X > 100) = P\left(z > \frac{100.5 - 90}{\sqrt{90}}\right)$	M1		have sq rt Cc of 100.5 or 99.5 and area < 0.5
	= P(z > 1.107)			
	= 1 - 0.8657 = 0.134	A1	[4]	Correct answer
-		•		•

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
GCE A/AS LEVEL – May/June 2009		9709	72

4	(i)	$H_0: p = 0.36$	B1		Both hypotheses correct
		$H_1: p > 0.36$			
		$P(7) = {}^{8}C_{7} \times (0.36)^{7} (0.64)^{1} = 0.00401$ $P(8) = (0.36)^{8} = 0.000282$	M1		Evaluating P(7) or P(8)
			A1		Correct answer for both P(7) and P(8)
		$\Sigma P = 0.00429 < 0.05$	M1		Comparing their prob sum to 0.05 oe
		Accept driving instructor's claim	A1 [5]	Correct conclusion ewo. No contradictions
	(ii)	Type I error	B1		Correct answer
		$P(6) = {}^{8}C_{6} \times (0.36)^{6} (0.64)^{2} = 0.02496$ $P(5) = {}^{8}C_{5} \times (0.36)^{5} (0.64)^{3} = 0.08876,$	M1 B1		Evaluating P(6) Correct expression for P(5) and showing this
		> 0.05	DI		Correct expression for P(5) and showing this is not in the CR either by $\Sigma P > 0.05$
					or $P(5) > 0.05$
		P(Type I error) = 0.0292 or 0.0293	A1		Correct answer
					NB Marks for part (ii) may be awarded in part
			Į.	4]	(i) but not vice versa.
5	(i)	$\int_{0}^{2} kx^{2}(2-x)dx = 1$	M1	•	For equating to 1 and a sensible attempt to
	(-)				integrate
		$\left[\frac{2kx^3}{3} - \frac{kx^4}{4}\right]^2 = 1$	A1		Correct integration and correct limits
		$\begin{bmatrix} 3 & 4 \end{bmatrix}_0$			Correct integration and correct ininte
		16k 16k			
		$\frac{16k}{3} - \frac{16k}{4} = 1$			
		k = 3/4 AG	A1		Given answer correctly obtained
		<i>N</i> 3/1110		3]	
	(ii)	mean = $\int_{0}^{2} 2kx^{3} - kx^{4} dx$	M1		Attempt to evaluate the integral of $xf(x)$
		- 0			r
		$=\left[\frac{2kx^4}{4} - \frac{kx^5}{5}\right]_0^2$	A1		Correct integral and correct limits (condone
		$\begin{bmatrix} 4 & 5 \end{bmatrix}_0$			loss of k)
		$=\frac{32k}{32k}-\frac{32k}{32k}$			
		4 5			
		$= 1.2 \mathrm{m}$	A1	3]	Correct answer
	(;;;)	$\int_{13}^{2} kx^{2} (2-x) dx$		<u> </u>	Advantage and the state of the
	(111)	• 1.5	M1		Attempt to evaluate the integral between 1.3 and 2 or equivalent
		$=\left[\frac{2kx^{3}}{3} - \frac{kx^{4}}{4}\right]^{2}$			and 2 of equivalent
		$- \left \frac{3}{3} - \frac{4}{4} \right _{13}$			
		_ ⊐1.5			
		= 1 - 0.563			
		= 0.437	A1		Correct answer
	(:)	the energy on the might is < 0.5 as		2]	Canaible magan
	(1V)	the area on the right is < 0.5 oe median is less than 1.3 m	M1 A1ft		Sensible reason ft their (iii)
		median is 1000 than 1.5 in	7111		SR B1ft if correct but 0.5 implied
			[2]	•

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	72

6	(i)	$T_1 + T_2 + T_4 - T_3 \sim N(-0.95, 4.345)$	M1	Correct method to find mean and var of
				$T_1 + T_2 + T_4 - T_3$ oe
			B1	Correct mean $(3.75 + 3.1 + 3.2 - 11)$
			A1	Correct variance
		$P[(T_1 + T_2 + T_4 - T_3) > 0]$	M1	Finding P their $[(T_1 + T_2 + T_4 - T_3) > 0]$ oe
		(0-0.95)		
		$= P\left(z > \frac{00.95}{\sqrt{4.345}}\right) = P(z > 0.4557)$	M1	Standardising (appropriate variance involving all
		(1.5 15)		4) and area < 0.5
		= 1 - 0.0.6758		
		=0.324	A1	Correct answer
			[6]	
	(ii)	$\overline{X} \sim N(3.1, 0.785/6)$	M1	Normal distribution mean 3.1, var 0.785/6, can be
	()			implied
		- (A-31)		OR N(18.6, 4.71) if working with totals
		$P(\overline{X} < 4) = P\left(z < \frac{4 - 3.1}{\sqrt{0.785/6}}\right)$	M1	Standardising with sq rt
		$(\sqrt{0.785/6})$		OR $(24-18.6)/\sqrt{4.71}$
		= P(z < 2.488)		no mixed methods
		= 0.994	A1	Correct answer
			[3]	