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1 Sketch the graph of y = sec x, for 0 ≤ x ≤ 2π. [3]

2 Solve the inequality |2x + 1| < |x|. [4]

3 Find the gradient of the curve with equation

2x2 − 4xy + 3y2 = 3,

at the point (2, 1). [4]

4 (i) Show that if y = 2x, then the equation

2x − 2−x = 1

can be written as a quadratic equation in y. [2]

(ii) Hence solve the equation

2x − 2−x = 1. [4]

5 (i) Prove the identity

sin2 θ cos2 θ ≡ 1
8
(1 − cos 4θ). [3]

(ii) Hence find the exact value of

� 1
3
π

0
sin2 θ cos2 θ dθ . [3]

6 Given that y = 1 when x = 0, solve the differential equation

dy
dx

= y3 + 1

y2
,

obtaining an expression for y in terms of x. [6]

7 (i) The equation x3 + x + 1 = 0 has one real root. Show by calculation that this root lies between−1 and 0. [2]

(ii) Show that, if a sequence of values given by the iterative formula

xn+1 = 2x3
n − 1

3x2
n
+ 1

converges, then it converges to the root of the equation given in part (i). [2]

(iii) Use this iterative formula, with initial value x1 = −0.5, to determine the root correct to 2 decimal
places, showing the result of each iteration. [3]
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8 (i) Find the roots of the equation 2 −  + 1 = 0, giving your answers in the form x + iy, where x and
y are real. [2]

(ii) Obtain the modulus and argument of each root. [3]

(iii) Show that each root also satisfies the equation 3 = −1. [2]

9 Let f(x) = x2 + 7x − 6(x − 1)(x − 2)(x + 1) .

(i) Express f(x) in partial fractions. [4]

(ii) Show that, when x is sufficiently small for x4 and higher powers to be neglected,

f(x) = −3 + 2x − 3
2
x2 + 11

4
x3. [5]

10

The diagram shows the curve y = ln x

x2
and its maximum point M. The curve cuts the x-axis at A.

(i) Write down the x-coordinate of A. [1]

(ii) Find the exact coordinates of M. [5]

(iii) Use integration by parts to find the exact area of the shaded region enclosed by the curve, the
x-axis and the line x = e. [5]

11 With respect to the origin O, the points P, Q, R, S have position vectors given by

−−→
OP = i − k,

−−→
OQ = −2i + 4j,

−−→
OR = 4i + 2j + k,

−−→
OS = 3i + 5j − 6k.

(i) Find the equation of the plane containing P, Q and R, giving your answer in the form
ax + by + c = d. [6]

(ii) The point N is the foot of the perpendicular from S to this plane. Find the position vector of N
and show that the length of SN is 7. [6]
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