

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/02

Paper 2 AS Level Structured Questions

For Examination from 2016

SPECIMEN MARK SCHEME

1 hour 15 minutes

MAXIMUM MARK: 60

Mark scheme abbreviations

; separates marking points

I alternative answers for the same point

R reject

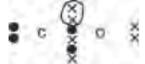
A accept (for answers correctly cued by the question, or by extra guidance)

AW alternative wording (where responses vary more than usual)

<u>underline</u> actual word given must be used by candidate (grammatical variants excepted)

max indicates the maximum number of marks that can be given

ora or reverse argument


mp marking point (with relevant number)

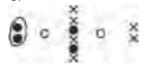
ecf error carried forward

ignore

AVP Alternative valid point (examples given as guidance)

- 1 (a) fewer electrons in Cl_2 than in Br_2 ora (1) weaker van der Waals' forces in Cl_2 or stronger van der Waals' forces in Br_2 (1) [2]
 - (b) CO has a permanent dipole or N₂ does not (1) permanent dipole-permanent dipole interactions are stronger than those from induced dipoles 1)
 - (c) a co-ordinate bond (1)

a covalent bond (1)


or

a lone pair (1)

or

penalise any groups of 3 or 4 electrons that are circled

[3]

(d) CO and HCN both have a dipole or N₂ does not have a dipole

[1]

(e) (i)

[1]

C ≡ N must be shown

(ii) nucleophilic addition

[1]

(iii)
$$CH_{3} - C^{\delta+} = O^{\delta-} \longrightarrow CH_{3} - C - O^{-} \xrightarrow{HCN} CH_{3} - C - OH + CN^{-}$$

$$CN - CN - CN - CN$$

 $C \longrightarrow O$ dipole correctly shown or correct curly arrow on $C \longrightarrow O$ (1) attack on C^{δ_+} by C of CN^- (1)

correct intermediate (1)

CN⁻ regenerated (1)

[3 max]

[Total: 13]

- 2 (a) (i) new graph has lower maximum and maximum is to the right of previous maximum [1]
 - (ii) H is at E_a (1)

[1]

- (b) the minimum amount of energy molecules must have or energy required (1) in order for the reaction to take place (1) [2]

(c) (i) iron or iron oxide

100 to 500 atm and 400-550 °C

units necessary - allow other correct values and units

[1]

(ii) C is placed to the left of H

[1]

(iii) more molecules now have energy $>E_a$

[1]

(d) (i) reaction 1

has greater E_a (1)

because energy is needed to break covalent bonds (1)

reaction 2

has lower E_a (only valid if converse not awarded for reaction 1)

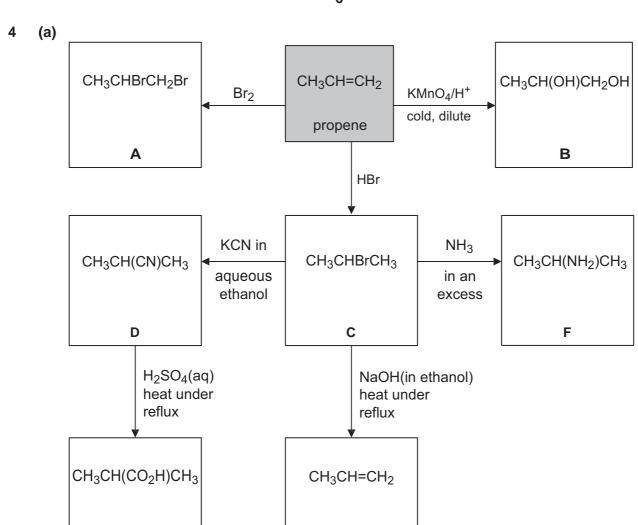
or actual reaction is H⁺ + OH⁻ → H₂O

or reaction involves ions (1)

opposite charges attract (1)

[4]

[2]


(ii) alkaline aqueous iodine (1)

yellow ppt (1)

[Total: 13]

3 (a) Accept only symbols.

(i)	K or K ⁺	[1]
(ii)	Na – allow K or Li	[1]
(iii)	C1 or Br	[1]
(iv)	Mg or Ca or Li	[1]
(b) Accept only formulae.		
(i)	F ₂ O	[1]
(ii)	SO_2 and SO_3 or P_2O_3/P_4O_6 and P_2O_5/P_4O_{10} or any two from N_2O_3 , NO_2/N_2O_4 , N_2O_5 or any two from Cl_2O , ClO_2 , ClO_3 , Cl_2O_7 (1 + 1)	[2]
(iii)	SiO ₂ or Al ₂ O ₃ or MgO	[1]
(iv)	giant structure (1) strong covalent bonds (1)	[2]
(c) (i)	octahedral	[1]
(ii)	I atom is larger than Cl atom (1)	
	cannot pack 7 F atoms around C <i>l</i> atom or can pack 7 F atoms around I atom (1)	[2] [Total: 13]
		[10(a), 13]

1 for each correct structure (7×1) [7]

(b) (i)
$$CH_3CH_2CH_2Br$$
 [1]

G

(ii) inductive effect of alkyl groups (1) stabilises secondary carbocation of primary (1) [2]

[Total: 10]

Ε

- 5 (a) (i) same molecular formula but different structural formula/structure
- [1]
- (ii) asymmetric C atom/chiral centre present (1) >C=C< bond present (1) [2]
- (b) (i) no because there is no chiral carbon atom present [1]
 - (ii)

[2]

(c) C: H: O = $\frac{35.8}{12}$: $\frac{4.5}{1}$: $\frac{59.7}{16}$ this mark is for correct use of A_r values (1)

C:H:O = 2.98: 4.5:3.73

C: H: O = 1: 1.5: 1.25 this mark is for evidence of correct calculation (1) gives empirical formula of W is C₄H₆O₅

[2]

(d) $n(OH^-) = 1.00 \times 29.4/1000 = 0.0294$ (1)

$$n(\mathbf{W}) = \frac{1.97}{134} = 0.0147(1)$$

no. of -CO₂H groups present

in one molecule of
$$\mathbf{W} = \frac{0.0294}{0.0147} = 2 (1)$$
 [3]

[Total: 11]

BLANK PAGE