MARK SCHEME for the October/November 2013 series

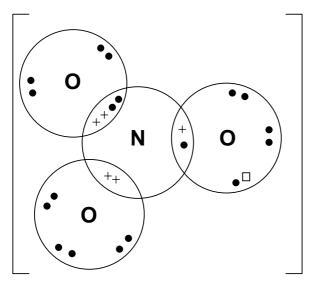
9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

1 (a)

dative bond to an oxygen using two N electrons	[1]
8 electrons around N in 1 double + 2 single bonds	[1]
a total of 24 electrons, including one, and only one " "	[1]
(the extra electron, " ", can be in a bond or a lone pair)	

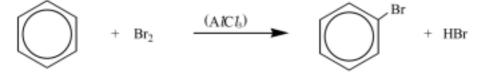
[3]

(b) (i) $2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$ [1]

(ii)	(down the group) nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a higher temperature to decompose	[1]
	because there is less polarisation of the anion/nitrate ion/N–O bonds	[1]
	as radius of M^{2^+} /metal ion increases <i>or</i> charge density of the cation decreases	[1]
		[4]

(c)
$$Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$$

species [1] balancing [1]


[2]

[Total: 9]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43
(a) any two	<i>from</i> : molecules have negligible volume negligible intermolecular forces <i>or</i> particles are <i>or</i> to the walls of the container random motion		
	no loss of kinetic energy during collisions <i>or</i> ela elastic molecules)	astic collisions (IN	2 × [1 [2]
(b) (i) low	temperature and high pressure	bo	oth required [1
(ii) (at	low T) forces between particles are more important,		[1
(at	high P) volume of molecules are significant		[1
			[3 max 2]

(c) (i) endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]

(ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1] products [1]

other possibilities: Cl_2 , I_2 , R-Cl, RCOCl etc.

[3]

[Total: 7]

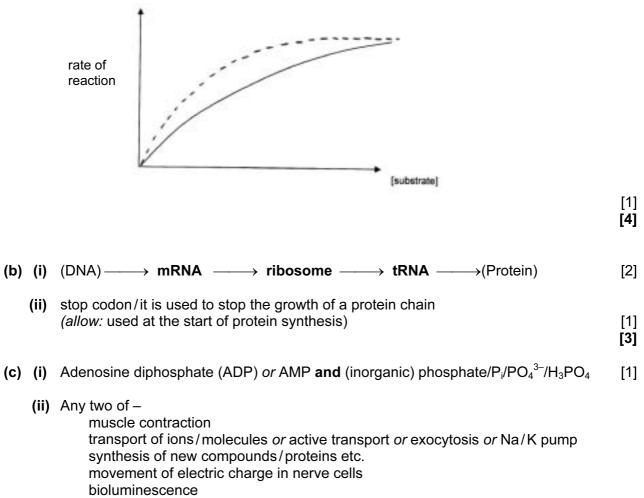
Pa	Page 4					Scheme			Syllab	ous	Paper	•
			G		VEL – O	ctober/No	vember	2013	970	1	43	
3 (a)	(i)	CH₃I	3r(g) —	→ Cł	H₃(g) + B	r(g)						[1]
	(ii)	or A	$lCl_3(g)$	$ 1 \\ \longrightarrow A \\ A \\$	$AlCl_2(g)$	(0)	mark)					[2]
		(,	-3(3)	,	.9)	(g) : e: (:)						[3]
(b)	(i)		-	es decre			se in nur	nber of ele	ctron she	lle		[1] [1]
				-	-			s attraction			air	[1]
	(ii)	to its	elf)					ce each F v				
		or be F)	cause	the bond	l length is	s so short	there is	repulsion b	etween t	he lone	pairs (on	
		,	pulsion	between	the nuc	lei (of F)						[1]
											[4 ma	nx 3]
(c)	(i)	for c	hlorine:			25/11 01) - 426	1 040 (0	~ 121)			
		ΔΠ -	- с(п –	п) + E(C	- (- () -	$2E(\Pi - Cl)$) = 430 = -18 4	+ 242 – (2 4 kJ mol ⁻¹	^ 431)			[2]
		for ic $\Lambda H =$	dine:	H) + $F(T)$	_ I) _ 2F	-(H _ T)	= 436	+ 151 _ (2	x 200)			
				· · · - (1	1) 20	-(11 1)	= -11	+ 151 – (2 kJ mol ^{–1}	~ 200)			[1]
	(ii)	•				-		e group fro does the X		enerav)		[1] [1]
					0,	, ,				0,7,		
												[5]
(d)	(i)			Na 15.2 / 2	റ	O 31.8 / 16		Br 53.0 / 79.9				[4]
			1	0.661	3	1.99		0.663				[1]
		÷	0.661⇒	› 1.0		3.0		1.0	th	us NaBr	0	[4]
									ur		03	[1]
	(ii)	_)₃ + 5NaBr + 5Br⁻ + 3l	_				specie	s [1]
					,						balancin	
											[Total:	: 15]

	Page 5						N	/lark Sc	heme)		Syllab	us	Pa	aper	
				GCE A LEVEL – October/November 2013970143						43						
4	(a)	(i)	Cart local			phite)	has	deloca	lised	electrons	whereas	silicon's	s elec	ctrons		[1]
		(ii)						e <i>or</i> del nt coval		ed/mobile ructure	electrons	whereas	germ	anium		[1] [2]
	(b)	(i)	2Pb	O ₂ -		→ 2Pb	0+0	D ₂								[1]
		(ii)	PbO) ₂ + 4	4HC1		→ Pb	C <i>l</i> ₂ + C	l₂ + 2ŀ	H ₂ O						[1]
		(iii)	SnO) + 2	NaOł	Η ——	\rightarrow N	la₂SnO₂	2 + H ₂	С						[1]
		(iv)	GeC	; <i>l</i> 4 +	2H₂C)	\rightarrow G	eO ₂ + 4	HC1							[1] [4]
														[Tota	ıl: 6]	

	Page 6	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2	2013 9701	43
5	(a) (i)	Br ₂ (aq) electrophilic substitution $^{3Br_2} \longrightarrow Br \longrightarrow OH \left(+ 3 HBr\right)$ Br		[1] [1]
				[1]
	(ii)	no special conditions electrophilic addition Br ₂ Br (allow bromol		[1] [1]
		Br_2 (allow bromol Br if $Br_2(aq)$ has	hydrin <i>or</i> dibromide s been used)	
				product [1]
	(iii)	light/UV or heat		[1]
	()	(free) radical substitution		[1]
		$Br_2 \longrightarrow \left(+ HBr \right)$		
		balanced equation in (i) (i.e. $3 Br_2$ and $3 HBr$) balanced equation in (iii) (i.e. Br_2 and HBr)		product [1] [1] [1]
			[1	1 max 10]
	(b) (i)			
			CH ₃ CO ₂ H	
		C D	Ε	
		3 correc	ct structures (can be in an	y order) 3 × [1]
	(ii)	results of tests: with 2,4–DNPH: C and D with I ₂ + OH ⁻ : D only		[1] [1]
		with NaOH: D and E (N.B. letters may be different – must refer to the	candidate's formulae)	[1]
			······································	[6]
				[Total: 16]

	ge 7		Mark Scheme		Syllabus	Paper
(a)	A (Bronst		VEL – October/Novemberis a proton donor.	er 2013	9701	43
(4)						[1
(b)	(i) H S		Н Н Н Н		•• О н Н	
		oxylic acid	а	imino grou	р	
	at lea	ast one H ₂ O mo	lecule in the right orientati		attached to –CO ₂ H attached to –NH ₂	′] ۱ [
	a H-t	bond	en in H_2O or $-CO_2H$ or o	on nitroge	n) shown at least	once on
		nd δ– shown at	least once (at each end of	the same	H-bond)	[
	(ii) + H ₃ N~	CO ₂ CH ₂	_			[[{
(c)						
		er S _N 1 or S _N 2 (or CO ₂ ⁻) CO ₂ H δ_{+} Cl δ_{-}	$\begin{pmatrix} CO_2H \\ H_3N \\ H_3C \\ H \end{pmatrix} + \\ H_3C \\ H \end{pmatrix}$	CO ₂ H CH ₃ → -H ⁺ CO ₂ H CO ₂ H CH ₃	+ CL	
	H ₃ N	for CO_2^-) CO_2H δ^+ CI δ^- CI δ^+ and δ^- curly arrow curly arrow curly arrow	(+) H_3N -Cl H_3C H_1 (-) H_1N -Cl H_2N shown in C–Cl w from lone pair on NH3 to w from C–Cl bond to Cl ate transition state or cal	CH_3 $\downarrow -H^+$ CO_2H CO_2H CH_3	on	[
	H ₃ N H ₃ C	for CO_2^-) CO_2H δ^+ Cl δ^- Cl δ^-	(+) H_3N -Cl H_3C H_1 (-) H_1N -Cl H_2N shown in C–Cl w from lone pair on NH3 to w from C–Cl bond to Cl ate transition state or cal	CH_3 $-H^+$ CO_2H CH_3 $CH_$	on	S _N 1, with [

Pa	Page 8		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	43
(e)	(i)	6 (si	x)		[1]
	(ii)	eithe or	er H ₂ NCH(CH ₃)CO–NHCH(CH ₂ OH)CO ₂ H H ₂ NCH(CH ₂ OH)CO–NHCH(CH ₃)CO ₂ H		[2] [3]
(f)	(i)		pounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation	of atoms in space	[1]
	(ii)	J			[1]
	(iii)	H ₂ N	H CH ₃		
		HO			[1] [3]
					[Total: 17]


Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

Section B

7	(a)	(i)	Metals such as Hg, Ag, Cd, Pb, Cu (identified – NOT just "heavy metals")	
			(allow names, atomic symbols or ions, names or formulae of salts $- e.g. Pb(NO_3)_2$)	
			<i>or</i> penicillin <i>or</i> organophosphorus insecticide etc.	[1]

(ii)	The ion/inhibitor binds to a part of the enzyme molecule away from the active site or to an allosteric site This changes the shape of the active site or denatures the enzyme	[1] [1]
	OR	
	the inhibitor forms a covalent/permanent bond with the active site	[1]
	blocking entry of the substrate	[1]

(iii)

non-shivering thermogenesis **DNA** synthesis/reproduction

2 × [1] **[3]**

[Total: 10]

Page 1				Syllabus	Paper			
			GCE A LEVEL – October/November 2013	9701	43			
8	(a) NM	IR and radiowaves (<i>or</i> VHF/UHF <i>or</i> 40 – 800 MHz)						
	(b) NMR: protons have (nuclear) spin or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field							
	the	re is i	nsufficient electron density/cloud around H atoms for a	H atoms for X-ray crystallography [1] [2]				
	(c) Sul	fur, b	ecause it has the highest electron density		[1] [1]			
	(d) (i)		$=\frac{100}{1.1} \times n$ $\frac{100 \times 0.15}{4.5 \times 1.1} = 3.03 = 3$	(calculation must	be shown) [1]			
	(ii)	the -	-OH peak (broad singlet) at δ 4.6		[1]			
	(iii)	3 (three)						
	(iv)	Q has peak at 11.7δ . which is due to $-CO_2H$ (This can only be formed by oxidising a <i>primary</i> alcohol.)						
		or P has 4 peaks in its NMR spectrum, not 3 in a secondary alcohol with 3 carbons, two (methyl) groups will be in the chemical environment (or wtte)						
		or a	nalysis of the splitting pattern in P : the peaks at δ 0.9 ach must be adjacent to a –CH ₂ – group. (hence –CH ₂ –		[1] ets, [1] [1]			
	(v)	CH ₃	CH ₂ CO ₂ H (structure needed, not name)		[1] [6]			
					[Total: 10]			

	Page 1			Mark Scheme			Syllabus	Paper		
				GCE A LEVEL – October/November 2013			9701	43		
9	(a)	(i)	diam	nond and graphite				[1]		
		(ii)	anv	three from						
		• •	-		graphite diamo					
			colo	ur trical conductivity			parent/colourles onductor	S		
				Iness	0		non slippery			
			density			more	e dense than graphite			
			melting point		diamond Iower	highe	r			
								3 × [1]		
								[4]		
	(b)	Because each carbon is only bonded to 3 others <i>or</i> is unsaturated/doubly-bonded/sp ² or has 3 bonding locations								
		(NOT forms only 3 <i>bonds</i>)								
		Cee	C ₆₀ H ₆₀							
		000	00					[1] [2]		
	(c)	(i) Number of atoms carbon present = $0.001 \times 6.02 \times 10^{23} / 12 = 5.02 \times 10^{19}$				[1]				
		(ii) Number of hexagons present = $5.02 \times 10^{19} / 2 = 2.51 \times 10^{19}$								
	Area of sheet = 690 × 2.51 × 10 ¹⁹ = 1.73 × 10²² nm²							[1]		
	(iii) Graphene: Yes, since it has				s free/delocalised/mobile	electr	ons	[1]		
			Buckminsterfullerene: No, (although there is delocalisation within each sphe							
		it consists of separate/simple/discrete molecules/spheres/particles,						/		
	(so no delocalisation from one					۵		[1]		
		or electrons are trapped within each molecule/sphere								
								[Total: 10]		