MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2012	9701	43
1	(a)	(a) MgCl ₂ : forms a		a (colourless) solution or dissolves.		[1]
	A <i>l</i> C <i>l</i> ₃ :		3:	produces a white ppt or steamy fumes	[1]	
				$2AlCl_3 \text{ (or } Al_2Cl_6) + 3H_2O \longrightarrow Al_2O_3 + 6HCl_3 \text{ (or } AlCl_3 + 3H_2O \longrightarrow Al(OH)_3 + 3HCl_3 \text{ (or } AlCl_3 + 3H_2O \longrightarrow Al(OH)_3 + 3HCl_3 \text{ (or } AlCl_3 + 3HCl_3 $	[1]	
			or	forms a (colourless) solution or dissolves	[1]	
				$A l C l_3 + 6 H_2 O \longrightarrow [A l (H_2 O)_5 (OH)]^{2+} + H^+ + 3$	CI⁻ [1]	
	:	SiCL	: produc	es a white ppt or steamy fumes		[1]
				$2H_2O \longrightarrow SiO_2 + 4HCl$		[1]
			(or bala	anced equation giving H_2SiO_3 or $Si(OH)_4$)		[Total: 5]
	(b)			: 1.10/58.5 = 1.88 × 10 ⁻² mol 0.90/74.6 = 1.21 × 10 ⁻² mol		[1] [1]
	total n(C <i>t</i>		total n(C <i>t</i>	(-) = 3.08 or 3.09 or 3.1 × 10 ⁻² mol [2 or more sig.	figs.] allow ecf	
	((ii)	Ag⁺(aq) +	$CT(aq) \longrightarrow AgCl(s)$		[1]
	(iii) moles sar		moles sar	mpled for the titration = $3.09 \times 10^{-2} \times 10/1000 = 3$	8.09 × 10 ^{−4} mol ecf	[1]
		1	his equal	s n(Ag ⁺), so vol of AgNO ₃ = $3.09 \times 10^{-4} \times 1000/0$.02 = 15.5 <u>cm</u>³ ecf	[1]
						[Total: 5]
¹)	(c) (i) bonds broken are C–H and I–I = 410 + 151 = 561 kJ mol ⁻¹ (all bonds = 573) bonds formed are C–I and H–I = 240 + 299 = 539 kJ mol ⁻¹ (all bonds = 5709 $\Delta H = +22$ kJ mol ⁻¹		′31 kJ mol⁻			
)			oonds for		⁻¹ (all bonds = 570	9 kJ mol ⁻¹) [2]
	(ii) 4	4 HI + 2 H	$HNO_3 \longrightarrow 2 I_2 + N_2O_3 + 3 H_2O $ (or double)		[1]
	N: (is reduced from) 5 to 3 I: (is oxidised from) –1 to 0		[1]			
	ח			[Total: 4]		
						-

[TOTAL: 14]

Page 3 Mark Scheme		Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	43

- 2 (a) catalyst: any two from the following three bullets for [1] mark:
 - speeds up/increases (NOT alters or changes) the rate of a reaction
 - lowers energy barrier/*E*_{act} or offers a lower energy pathway
 - is not used up or remains unchanged or does not alter its mass/concentration or does not appear in stoichiometric equation or is regenerated

homogeneous: (catalyst and reactants) in the same phase/state

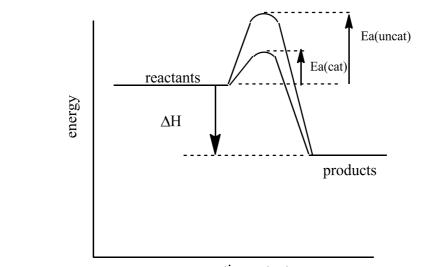
[Total: 2]

(b) (i) e.g. car exhausts/engines or aeroplanes or lightning or <u>burning</u> fuels or power stations

[1]

[1]

[1]


[1]

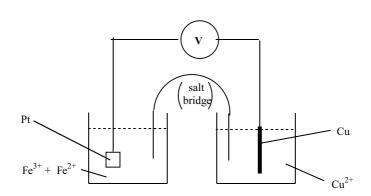
nitrogen reacts with oxygen or N₂ + O₂

(c)

(ii) $NO_2 + SO_2 \longrightarrow NO + SO_3$ $NO + \frac{1}{2}O_2 \longrightarrow NO_2$ $SO_3 + H_2O \longrightarrow H_2SO_4$ $4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$ or $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$ (any 3 equations) 3 × [1]

[Total: 5]

reaction	extent

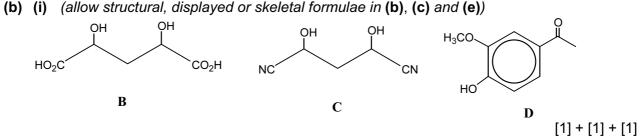

ΔH shown as negative	[1]
both E_{a} labelled and correct – i.e. for the forward reaction	[1]
$E_a(cat) < E_a(uncat)$	[1]

[Total: 3]

[TOTAL: 10]

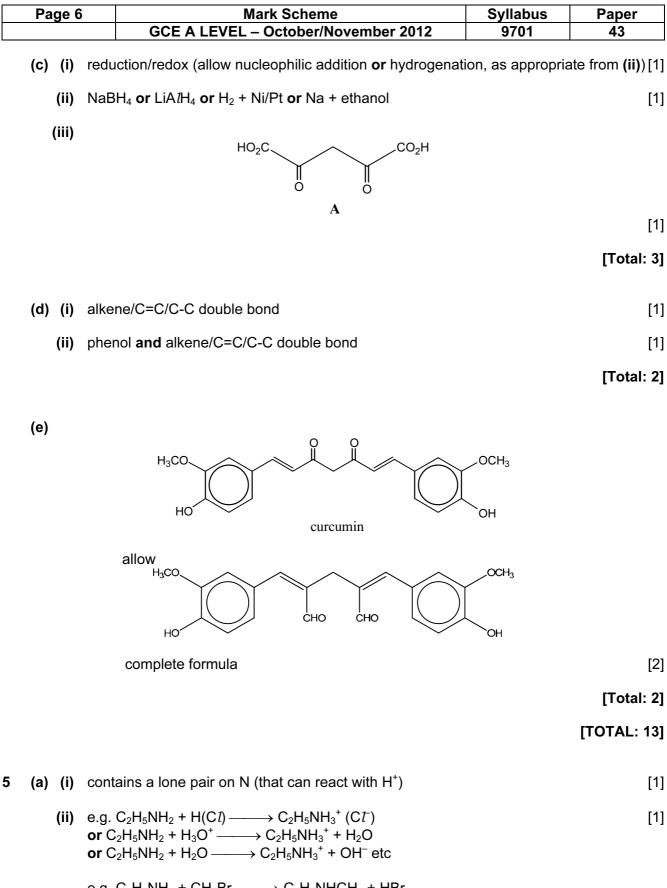
	Page 4		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2012	9701	43
3	(a) (1s	² 2s ² 2	⁶)3s ² 3p ⁶ 3d ⁹		[1]
					[Total: 1]
	(b) (i)		tron / orbitals near ligands are at a higher energy to repulsion from ligand lone pairs		[1] [1]
	(ii)		n an electron moves to higher orbital / energy level or sorbs a photon or light (mention of light being <i>emitted</i>	•	[1] [1]
	(iii)	(diffe	erent ligands produce) different (sizes of) energy gap c	or ∆E	[1]
					[Total: 5]

(c)


solutions at 1 mol dm ⁻³ (1 M) and 298(K)/25°C	[1]
salt bridge and voltmeter	[1]
platinum/carbon/graphite electrode	[1]
(this mark is negated by inclusion of H_2 around the electrode)	
copper electrode	[1]
Fe ³⁺ /Fe ²⁺ mixture and Cu ²⁺ or CuSO ₄ etc	[1]

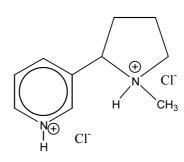
[Total: 5]

	either	or	
(i)	ligand exchange/substitution/displacement/replacement	precipitation/acid-base/deprotonation	
(ii)	$\begin{split} & [\text{Cu}(\text{H}_2\text{O})_6]^{2^+} + 4\text{NH}_3 \rightarrow [\text{Cu}(\text{H}_2\text{O})_2(\text{NH}_3)_4]^{2^+} + 4\text{H}_2\text{O} \\ & \text{or} \left[\text{Cu}(\text{H}_2\text{O})_6\right]^{2^+} + 4\text{NH}_3 \rightarrow [\text{Cu}(\text{NH}_3)_4]^{2^+} + 6\text{H}_2\text{O} \\ & \text{or} \left[\text{Cu}(\text{H}_2\text{O})_6\right]^{2^+} + n\text{NH}_3 \rightarrow [\text{Cu}(\text{H}_2\text{O})_{6-n}(\text{NH}_3)_n]^{2^+} + n\text{H}_2\text{O} \end{split}$	$\begin{array}{l} {\sf Cu}^{2*}+2{\sf NH}_3+2{\sf H}_2{\sf O}\rightarrow{\sf Cu}({\sf OH})_2+2{\sf NH}_4^+\\ or{\sf Cu}^{2*}+2{\sf NH}_4{\sf OH}\rightarrow{\sf Cu}({\sf OH})_2+2{\sf NH}_4^+\\ or[{\sf Cu}({\sf H}_2{\sf O})_6]^{2*}+2{\sf NH}_3\rightarrow[{\sf Cu}({\sf H}_2{\sf O})_4({\sf OH})_2]\\ +2{\sf NH}_4^+ \end{array}$	
(iii)	turns purple or deep/dark/royal blue	forms a pale blue ppt	
		[1] + [1] + [1]	


(d) Parts (i) – (iii) have to correspond to each other.

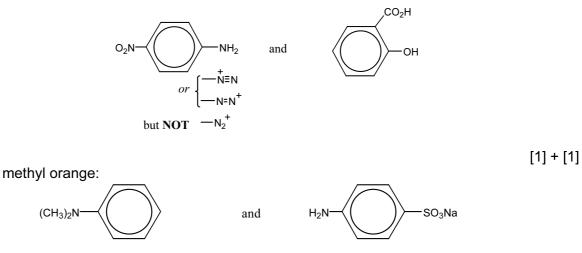
Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2	GCE A LEVEL – October/November 2012 9701	
(iv) E° will decrease/ be less positive/more negative because [Cu ²⁺] decreases or Cu ²⁺ + 2e ⁻ \Rightarrow Cu shifts to the LHS or E° [Cu(NH ₃) ₄] ²⁺ = -0.05V or [Cu(NH ₃) ₄] ²⁺ is more stable.		shifts to the LHS or	[1]
			[Total: 4
(e) (i)	aldehyde		[1
(ii)	red ppt./solid		[1
(iii)	$2Cu^{2+} + CH_3CHO + 5OH^- \rightarrow Cu_2O + CH_3CO_2^- +$	3H ₂ O	[1
			[Total: 3]
(f) pH	= pK_a + log [salt]/[acid] = $-\log(9.3 \times 10^{-4})$ + log (0 = 3.032 + 0.204 = 3.23/3.24 (3 or more sig. figs.)		[2
			[Total: 2]
			[TOTAL: 20]
(a) (i)	ketone/carbonyl [NOT aldehyde]		[1
(ii)	carboxylic acid (name of group needed. NOT 'ca	rboxyl')	[1
			[Total: 2]
(b) (i)	(allow structural, displayed or skeletal formulae in	n (b) (c) and (e))	

(ii) heat/reflux/boil/hot/T>60°C in H_3O^+ or aqueous/dilute $H^+/HCl/H_2SO_4$ (**NOT** HNO₃) [1]


[Total: 4]

www.theallpapers.com

Paper	Syllabus	Mark Scheme	Page 7	
43	9701	GCE A LEVEL – October/November 2012		
	9701	GCE A LEVEL – October/November 2012		


- (iii) the lone pair (on N) in phenylamine overlaps with ring or is delocalised [1] electron density of N is reduced or N becomes more positive or lone pair is less available [1]
- (iv)

[1] + [1]

[7 max 6]

- (b) (i) $NaNO_2 + HCl/H^+$ or $HNO_2(HNO_3 \text{ or } NO_3^- \text{ negates this mark})$ [1] -10°C < T \leq 10°C or 'less than 10°C' [1]
 - (ii) alizarin yellow R:

(NH₂ alternatives as above)

[1] + [1]

(iii) makes the molecule (more) hydrophilic/soluble in water (due to H-bonding or ionic solvation)
or increases its melting point

[1]

[Total: 7]

[TOTAL: 13]

	Page 8	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2012	9701	43
6	(a) It has no	chiral centre/asymmetric carbon/optical isomers or is	not optically acti	ve [1]
				[Total: 1]
	(b) (i) struc	cture – α - <u>helix</u> or β -(pleated) <u>sheet</u>		[1]
	hydı	rogen (bonding) (for either)		[1]

(ii) any two pairs from the following:

bonding	possible amino acid	
van der Waals'	ala, gly, leu, ile, val, pro, phe, try, met	
ionic	asp, arg, glu, his, lys	
disulfide bond	cysteine	
hydrogen bond	asn, asp, arg, gln, glu, his, lys, ser, thr, try, tyr	
[1] + [1]	[1]+[1]	

(candidates can identify amino acids by name, three-letter abbreviation, formula of sidechain or formula of whole amino acid)

[Total: 6]

(c) (globular proteins/enzymes need) polar/H-bonding/ionic (side chains) so as to....enhance their solubility or as part of their active site or to help their catalytic activity [1]

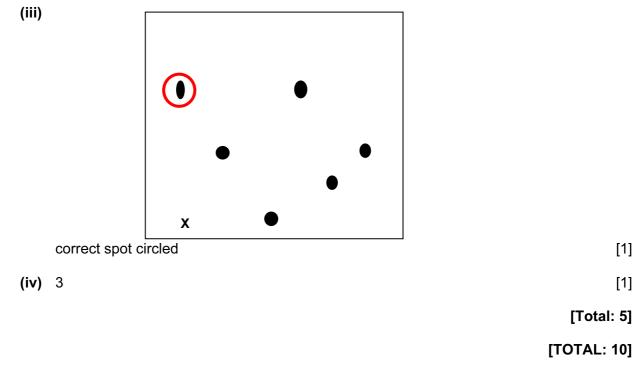
[Total: 1]

(d) (i)	A – T C – G	[1] [1]
(ii)	(start or met) – gly – ser – leu – ala – ser – (stop) If an amino acid is shown before gly, then it must be met. correct sequence of the 5 in bold	[2]
(iii)	leu would be replaced by val	[1]
		[Total: 5]

[TOTAL: 13]

	Page 9		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2012	9701	43
7	(a) (i)	(a) (i) No. of carbon atoms present in J is $\frac{100 \times 1.3}{1.1 \times 23.5}$ = 5 carbons (must show working)			
		(NM	R spectrum shows) 10 H (atoms present) (no reasonir	ng need be show	/n) [1]
	(ii)	Oxy	gen or O ₂ or O		[1]
	(iii)	J is	$(CH_3CH_2)_2C=O$		[1]
	any one from: quartet/4 peaks (at δ 2.5) shows an adjacent CH ₃ or 3 adjacent H triplet/3 peaks (at δ 1.1) shows an adjacent CH ₂ or 2 adjacent H two (chemical/hydrogen) environments pair of peaks in ratio 6 :4 are (two) ethyl groups or the triplet + quartet shows group δ 2.5 implies there's a CH ₂ next to C=O		ws an ethyl [1]		

[Total: 5]


(b) (i)

technique	physical method
paper chromatography	partition
thin-layer chromatography	adsorption
gas-liquid chromatography	partition

(ii)	4
------	---

[2]

Page 10		0	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2012	9701	43
8	(a) A	monomers: $H_2N-(CH_2)_6-NH_2$ and $HO_2C-(CH_2)_4-CO_2H$ or $ClCO(CH_2)_4COCl$			<i>l</i> [1]
		Con	densation or nucleophilic substitution or addition-elimi	nation	[1]
	В	mon	omer: H ₂ C=CHCH ₃		[1]
		Addi	tion (NOT additional)	0	[1]
	С	mon	omer: H ₂ N–(CH ₂) ₅ –CO ₂ H or H ₂ N–(CH ₂) ₅ –COC <i>l</i> or	NH	[1]
		Con	densation		[1]
					[max 5]

(b) (i) Need a statement from both columns for [1] mark.

(a)	(b)	
more compact packing in A chains closer in A chains further apart in B	stronger (inter-chain) forces in A hydrogen bonding in A weaker (inter-chain) or van der Waals' forces in B B contains side-chain/branched chains	

[1]

(ii) Polymer B – van der Waals'/London (dispersion) forces/induced-instantaneous/induced dipoles NOT just 'dipole'

[1]

[Total: 2]

[TOTAL: 7]