MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

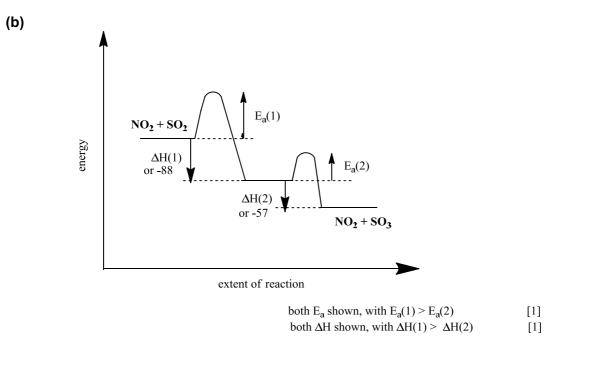
9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

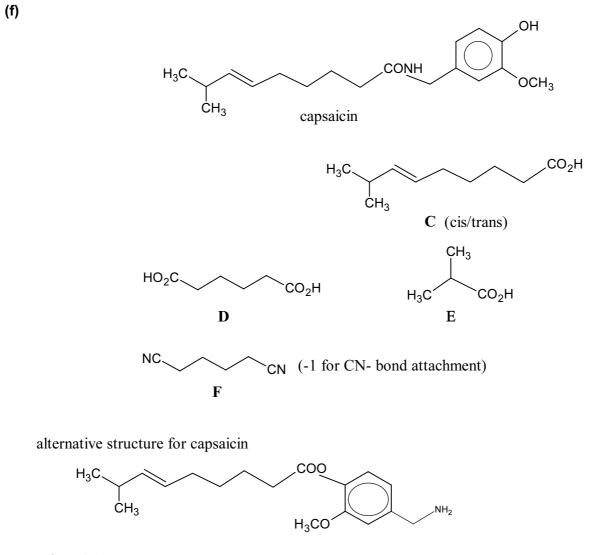
Cambridge will not enter into discussions about these mark schemes.


Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2012	9701	41
1	(a) SiC	24: w ł	nite solid or white/steamy fumes		[1]
	SiC	$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$			[1]
	PCl_5 : fizzes <i>or</i> white/steamy fumes $PCl_5 + 4H_2O \longrightarrow H_3PO_4 + 5HCl_2$				[1] [1]
					[4]
	(b) (i)	MnC	$D_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$		[1]
	(ii)	5 : 1			
	(iii)	n(Mr	$nO_4^-) = 0.02 \times 15/1000 = 3 \times 10^{-4} \text{ (mol)}$		[1]
	(iv)	n(Fe	$(e^{2^+}) = 5 \times 3 \times 10^{-4} = 1.5 \times 10^{-3}$ (mol) ecf from (i) or (ii)		[1]
	(v)	[Fe ^{2·}	⁺] = 1.5 × 10 ⁻³ × 1000/2.5 = 0.6 (mol dm ⁻³) ecf from (iv)	[1]
	(vi)		e original solution, there was 0.15 mol of Fe ³⁺ in 100 cr e partially-used solution, there is 0.06 mol of Fe ²⁺ in 10		
		So r	emaining Fe ³⁺ = 0.15 – 0.06 = 0.09 mol. ecf from (v)		[1]
		This	can react with 0.045 mol of Cu, which = 0.045×63.5	= 2.86 g of coppe	er. ecf [1]
					[6]
	• •		roken are Si-Si and $Cl-Cl = 222 + 244 = 466 \text{ kJ mol}^{-1}$ rmed are 2 × Si-Cl = 2 × 359 = 718 kJ mol^{-1}		
			52 kJ mol ⁻¹		[2]
					[2]
	(-1) (1)	0			
	(d) (i)	Ca_2	$Si + 6H_2O \longrightarrow 2Ca(OH)_2 + SiO_2 + 4H_2$		[1]
	(ii)	silco	n has been oxidised <u>AND</u> hydrogen has been reduced	1	[1]
					[2]
					[Total: 14]

	Page 3		3	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – October/November 2012	9701	41
2	(a)	(i)		CuSO₄ silver		[1] [1]
		(ii)		bridge neter		[1] [1]
						[4]
	(b)	(i)	0.80	0 – 0.34 = (+) 0.46 V		[1]
		(ii)		$_{\text{ell}}$ = 0.17, this is 0.29V less than the standard E° , $E_{\text{Ag electrode}}$ must = 0.80 – 0.29 = 0.51V		[1]
		(iii)	0.51	= 0.80 + 0.06log [Ag ⁺], so [Ag ⁺] = $10^{(-0.29/0.06)} = 1.47 \text{ x}^{-1}$	<u>10⁻⁵</u> moldm ⁻³ eo	cf from (ii) [1]
						[3]
	(c)	(i)	K _{sp} = units	= $[Ag^{+}]^{2}[SO_{4}^{2-}]$ s = mol ³ dm ⁻⁹ ecf on K_{sp}		[1] [1]
		(ii)		$_{4^{2^{-}}] = [Ag^{+}]/2 \ K_{sp} = (1.6 \times 10^{-2})^{2} \times 0.8 \times 10^{-2} = 2.05 \times 10^{-2}$	0⁻⁶ (mol³ dm⁻⁹)	[1]
			_			[3]
	(d)	Ag(Agl		white cream		[1] [1]
		Ag]	I	yellow		[1]
		Sol	ubility	/ decreases down the group		[1]
						[4]
	(e)	sol	ubility	decreases down the group		[1]
		bot	h latti	onic radius increases ce energy <u>and</u> hydration(solvation) energy to decrease change of solution becomes more endothermic	9	[1] [1] [1]
			. icipy			[⁴]
						[Total: 18]

		Paper	
GCE A LEVEL – October/November 2012 9701 41			
us: different states <u>AND</u> homogeneous: same	e state	[1]	
(ii) the correct allocation of the terms <i>heterogeneous</i> and <i>homogeneous</i> to common catalysts			
eterogeneous, e.g. Fe (in the Haber process) . $N_2 + 3H_2 \longrightarrow 2NH_3$	linked to correc	t system [1] [1]	
how catalyst works, adsorption (onto the surface) ecf for non-iron catalyst		[1]	
example of homogeneous, e.g. Fe^{3+} or Fe^{2+} (in $S_2O_8^{2-} + I^-$) linked to correct system		ct system [1]	
$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$		[1]	
		[1]	
		[8]	
	bomogeneous, e.g. Fe^{3+} or Fe^{2+} (in $S_2O_8^{2-} + I^-$. $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$ works, e.g. $Fe^{3+} + I^- \longrightarrow Fe^{2+} + \frac{1}{2}I_2$ ron catalyst	$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$ works, e.g. $Fe^{3+} + I^- \longrightarrow Fe^{2+} + \frac{1}{2}I_2$	



[2]

	Page 5	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2012	9701	41
4	(a) K ₂ Cr ₂ O ₇	+ H^+ + heat under reflux		[1]
	(b) nucleopl	nilic substitution		[1]
	(c) heat und	ler reflux + aqueous HC <i>l</i>		[1]
	(d) alkene			[1]
	(e) amide o	rester		[1]

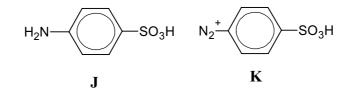
[5]

ecf 5 × [1]

[5]

[Total: 10]

	Page 6	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – October/November 2012	9701	41	
5	(a) phenol ketone			[1 [1]	
				[2]	


(b)

reagent	observation	structure of product	type of reaction
sodium metal	effervescence /bubbles/fizzing		redox
aqueous bromine	decolourises or white ppt.	Br HO Br	electrophilic substitution
aqueous alkaline iodine	yellow ppt.	HO CO ₂ Na	oxidation

[2]

[8]

(c) (i)

[1] + [1]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	41
(ii) ste _l	0 1: NaNO ₂ + HC <i>l or</i> HNO ₂		[1]
at T	< 10°C		[1]
ste	o 2: (add K to a solution of G) in aqueous NaOH		[1]
			[5]
(d) (CH₃CH	$SOC l_2/PC l_5$ $/PC l_3 + heat \qquad add to G (in NaOF)$ $_2CO_2H) \xrightarrow{\qquad} CH_3CH_2COC l \xrightarrow{\qquad} [1] \qquad [1]$		
ecf fror	n CH₃COOH		[3]

[Total: 18]

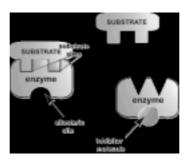
Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	41

Section B

6 (a)

bonding	structure involved
disulfide bonds between parts of the chain	tertiary
hydrogen bonds in a β -pleated sheet	secondary
ionic bonds between parts of the chain	tertiary
peptide links between amino acids	primary

zero/one correct only \rightarrow [0], two correct only \rightarrow [1], three correct only \rightarrow [2] all four correct [3]


[3]

(b) labelled diagrams such as:

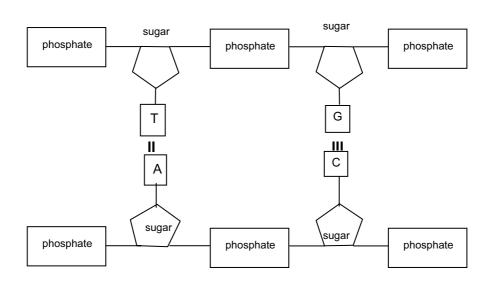
Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme
- so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site

cannot be removed by increasing [substrate]


2 × [1]

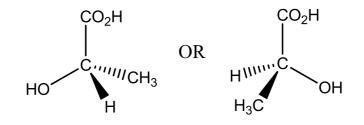
2 × [1]

[4]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	41

(c)

A and C and other strand correct	[1]
H-bonds labelled	[1]
adenine <u>AND</u> cytosine	[1]


[3]

[Total: 10]

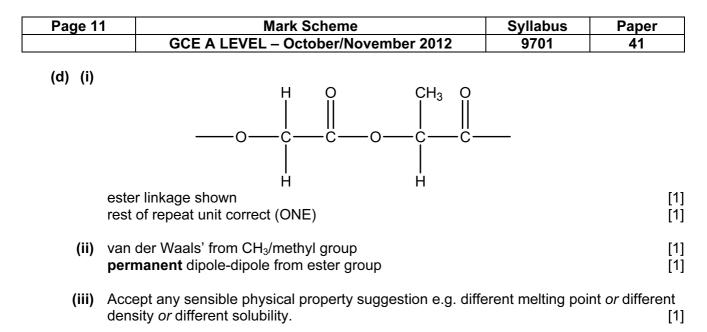
7	(a) (i)	Electrophoresis	[1]
	(ii)	Using a restriction enzyme.	[1]
	(iii)	The phosphate group.	[1]
			[3]
	(b) (i)	X labelled correctly on diagram.	[1]
	(ii)	Suspect 2 AND matches crime scene 1 or matches at least one crime scene.	[1]
			[2]

Page 1	10	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2012	9701	41
(c) P i	is CH₃($O_2CH_2CH_3$		l
an	y <u>four</u>			
•		erent (proton) environments nd M+1 data shows no of carbons present is) (100 × 0	$(22)/(1.1 \times 5.1)$	= 1 carbon
•	•	IMR spectrum shows 8 hydrogens leaving 32 mass u	, , ,	
		88 and (molecular formula is) $C_4H_8O_2$		
•	•	aks/quartet (at 4.1) shows an adjacent $3H/CH_3$		
•		aks/triplet (at 1.3) shows an adjacent 2H/CH ₂		
•		< at) 2.0/singlet shows CH₃CO (group) < at) 4.1/quartet and 1.3/triplet shows presence of eth	VI/CH.CH. (arou	(au
•	(pea	(a) 4. Inquarter and 1.3/inplet shows presence of eith		ιρ) 4 ×
				[Total: 1
(a) (i)	It cou	Ild denature the enzyme or		
	alter	the 3D structure/tertiary structure/shape of active site		
(ii)	cond	ensation		
()				

(b)

[1]

[1]


(c) (i) (Acid present would) hydrolyse the ester (linkage) [1]

or correct diagram of the S isomer

(ii) (Hot water would) **soften** (the container)

[2]

[1]

[5]

[Total: 10]