## MARK SCHEME for the October/November 2012 series

## 9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| F  | Page 2      |                                                                                                                          | Mark Scheme                                                                                                   | Syllabus      | Paper<br>22 | ·      |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|-------------|--------|
|    |             |                                                                                                                          | GCE AS/A LEVEL – October/November 2012 9701                                                                   |               |             |        |
| (a | a) Zn<br>no |                                                                                                                          | Zn(OH) <sub>2</sub> ZnO<br>r other compounds of Zn                                                            |               | (any 2)     | [2]    |
| (b | o) (i)      |                                                                                                                          | nsure all of the water of crystallisation had been driven c<br>e at constant mass                             | off <b>or</b> | (1)         |        |
|    | (ii)        | mas                                                                                                                      | s of ZnSO <sub>4</sub> = 76.34 – 74.25 = 2.09 g                                                               |               | (1)         |        |
|    |             | M <sub>r</sub> Z                                                                                                         | 2nSO <sub>4</sub> = 65.4 + 32.1 + (4 × 16.0) = 161.5                                                          |               |             |        |
|    |             | allov                                                                                                                    | v use of Zn = 65 and/or S = 32 to give values between 1                                                       | 61 and 161.5  | (1)         |        |
|    |             | <i>n</i> (Zr                                                                                                             | $nSO_4$ ) = $\frac{2.09}{161.5}$ = 0.01294 = 1.29 × 10 <sup>-2</sup>                                          |               |             |        |
|    |             | ZnS                                                                                                                      | $O_4 = 161$ gives $1.30 \times 10^{-2}$                                                                       |               | (1)         |        |
|    | (iii        | ) mas                                                                                                                    | s of H <sub>2</sub> O driven off = 77.97 – 76.34 = 1.63 g                                                     |               | (1)         |        |
|    |             | <i>n</i> (H <sub>2</sub>                                                                                                 | $P(0) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$                                                        |               | (1)         |        |
|    | (iv         | <b>)</b> 1.29                                                                                                            | $\times 10^{-2}$ mol ZnSO <sub>4</sub> are combined with 9.1 $\times 10^{-2}$ mol H <sub>2</sub>              | С             |             |        |
|    |             | 1 m                                                                                                                      | ol ZnSO <sub>4</sub> is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$                        |               |             |        |
|    |             | = 7.0                                                                                                                    | $054 \equiv 7 \mod H_2O$                                                                                      |               |             |        |
|    |             |                                                                                                                          | wer must be expressed as a whole number<br>w ecf on candidate's answers to <b>(b)(ii)</b> and <b>(b)(iii)</b> |               | (1)         | [7]    |
| (c | :) (i)      | <i>n</i> (Zr                                                                                                             | $n) = n (CH_3CO_2)_2Zn.2H_2O$                                                                                 |               | (1)         |        |
|    |             | <i>n</i> (Zr                                                                                                             | $n) = \frac{0.015}{65.4} = 2.290 \times 10^{-4}$                                                              |               |             |        |
|    |             | = 2.2                                                                                                                    | 29 × 10 <sup>-4</sup>                                                                                         |               | (1)         |        |
|    |             |                                                                                                                          | s of crystals = 2.29 × 10 <sup>-4</sup> × 219.4 = 0.0502655 g<br>05 g = 50 mg                                 |               | (1)         |        |
|    | (ii)        | i) concentration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{0.005} = 4.58 \times 10^{-2} \text{ mol dm}^{-3}$ |                                                                                                               |               |             |        |
|    |             |                                                                                                                          |                                                                                                               |               | (1)         |        |
|    |             | allov                                                                                                                    | v correct answers if Zn = 65 is used                                                                          |               |             | [4]    |
|    |             |                                                                                                                          |                                                                                                               |               | [Tota       | l: 13] |
|    |             |                                                                                                                          |                                                                                                               |               |             |        |

|   | Page 3 |                  | ;                            |                                                                                            | Mark                                                  | <b>Scheme</b>                                       |          |                                                   | Sylla | bus                                 | Paper      |     |
|---|--------|------------------|------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|----------|---------------------------------------------------|-------|-------------------------------------|------------|-----|
|   |        | 3                |                              | GCE AS/                                                                                    | A LEVEL -                                             |                                                     | ovembe   | r 2012                                            | 97    |                                     | 22         |     |
| 2 | (a)    | (i)              | therr                        | mal stability d                                                                            | ecreases do                                           | own Group                                           | VII      |                                                   |       |                                     | (1)        |     |
|   |        | (ii)             | the b<br>H—2<br>sma          | C <i>l</i> to I, atom<br>bonding pair i<br>X bond becor<br>ller orbital ove<br>ce H—X bond | s further fror<br>nes longer <b>o</b><br>erlap occurs | n the nucle<br>o <b>r</b>                           |          |                                                   |       |                                     | (1)<br>(1) | [3] |
|   | (b)    | K <sub>c</sub> = | $= \frac{[H_2]}{[H_2]}$      | $\frac{\mathrm{HI}^{2}}{\mathrm{]}\times\mathrm{[I_{2}]}}$                                 |                                                       |                                                     |          |                                                   |       |                                     |            | (1) |
|   |        | no               | units ·                      | – must be cle                                                                              | arly stated                                           |                                                     |          |                                                   |       |                                     | (1)        | [2] |
|   | (c)    | (i)              |                              | hange                                                                                      | _                                                     |                                                     |          |                                                   |       |                                     | (1)        |     |
|   |        |                  | -                            | as no units <b>o</b> i<br>e no. of mole                                                    |                                                       | s each side                                         | of equil | ibrium                                            |       |                                     | (1)        |     |
|   |        | (ii)             | $K_{\rm c}$ in               | librium moves<br>acreases with                                                             | decreasing                                            |                                                     | e or     |                                                   |       |                                     | (1)        |     |
|   |        |                  |                              | ard reaction i<br>rse reaction i                                                           |                                                       |                                                     |          |                                                   |       |                                     | (1)        | [4] |
|   | (d)    | equ              | al mo<br>iil. mc<br>iil. coi |                                                                                            |                                                       | $H_{2}(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$ | +        | $I_2(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$ | )     | 2HI(g)<br>0<br>2y<br><u>2y</u><br>1 | (1)        |     |
|   |        | <i>K</i> c =     | $=\frac{H}{[H_2]}$           | $\frac{\mathrm{HI}^{2}}{\mathrm{]} \times \mathrm{[I_{2}]}} = \frac{(}{(0.0)}$             | $(2y)^2 = 5(2y)^2$                                    | 9                                                   |          |                                                   |       |                                     | (1)        |     |
|   |        | (0.0             | <u>2y</u><br>)2 – y          | $\frac{1}{\sqrt{59}} = \sqrt{59} = 77$                                                     | ,                                                     |                                                     |          |                                                   |       |                                     |            |     |
|   |        | 2y =             | = (7.7                       | ′ × 0.02) – 7.7                                                                            | у                                                     |                                                     |          |                                                   |       |                                     |            |     |
|   |        | 9.7              | y = 0.                       | 154                                                                                        |                                                       |                                                     |          |                                                   |       |                                     |            |     |
|   |        | give             | es y =                       | $=\frac{0.154}{9.7}=0.0$                                                                   | 159= 0.016                                            |                                                     |          |                                                   |       |                                     | (1)        |     |
|   |        | at equilibrium   |                              |                                                                                            |                                                       |                                                     |          |                                                   |       |                                     |            |     |
|   |        | ``               | ,                            | $2 \times 0.016 = 0.$<br>$p(I_2) = (0.02 - 1)$                                             |                                                       | 004                                                 |          |                                                   |       |                                     | (1)        |     |
|   |        | allo             | w ecf                        | where possi                                                                                | ble                                                   |                                                     |          |                                                   |       |                                     |            | [4] |

[Total: 13]

| Pa  | ige 4 |                                                              | Mark Scheme                                                                                                   | Syllabus | Paper      | •   |
|-----|-------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|------------|-----|
|     |       | GCE                                                          | AS/A LEVEL – October/November 2012                                                                            | 9701     | 22         |     |
| (a) | (i)   | $N_2(g) + 3H_2(g)$<br>$N_2(g) + 3H_2(g)$                     | $(a) \Rightarrow 2NH_3(g)$ or<br>$(b) \rightarrow 2NH_3(g)$                                                   |          |            |     |
|     |       | state symbols                                                | required                                                                                                      |          | (1)        |     |
|     | (ii)  | pressure                                                     | between 60 and 250 atm <b>or</b><br>between 60 × 10 <sup>5</sup> Pa and 250 × 10 <sup>5</sup> Pa              |          | (1)        |     |
|     |       | temperature                                                  | between 300 and 550 °C                                                                                        |          | (1)        |     |
|     |       | catalyst                                                     | iron / iron oxide                                                                                             |          | (1)        |     |
|     | (iii) |                                                              | of $HNO_3$ / as a cleaning agent / refrigerant blosives / to remove $SO_2$ from combustion pro-               |          |            |     |
| (b) | (i)   | NH₄C <i>l</i> and Ca<br>both formula                         |                                                                                                               |          | (1)        |     |
|     | (ii)  | 2NH₄C <i>l</i> + Ca(<br>NH₄ <sup>+</sup> + OH <sup>-</sup> → |                                                                                                               |          |            |     |
|     |       | correct produc<br>correctly balar                            |                                                                                                               |          | (1)<br>(1) |     |
|     | (iii) | CaO                                                          |                                                                                                               |          | (1)        |     |
|     |       |                                                              | d / it is basic / it does not react with $NH_3$ or<br>$_4O_{10}$ and $H_2SO_4$ are acidic / react with $NH_3$ |          | (1)        | [5] |
|     | (c)   | H<br>H-N: +<br>H<br>correct display                          | $+ H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H - N \rightarrow H \\ H \end{bmatrix}^{+}$                |          |            |     |

| correct displayed eqn.,                 |         |
|-----------------------------------------|---------|
| with positive charge clearly shown      | (1)     |
| lone pair on NH <sub>3</sub>            | (1)     |
| co-ordinate / dative bond clearly shown | (1) [3] |
|                                         |         |

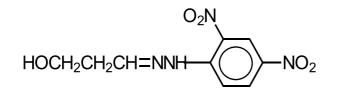
| Page 5 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2012 | 9701     | 22    |

4 (a) (i)

| reaction | organic<br>compound                                | reagent                                         | structural formulae of organic products          |
|----------|----------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| А        | (CH <sub>3</sub> ) <sub>3</sub> COH                | Cr₂O7 <sup>2−</sup> /H⁺<br>heat under<br>reflux | no reaction                                      |
| В        | CH <sub>3</sub> CH <sub>2</sub> CHO                | Fehling's<br>reagent<br>warm                    | CH₃CH₂CO₂H <b>or</b><br>CH₃CH₂CO₂ <sup>−</sup>   |
| С        | HCO <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | NaOH(aq)<br>warm                                | HCO₂Na <b>or</b> HCO₂ <sup>−</sup><br>(CH₃)₂CHOH |
| D        | CH <sub>2</sub> =CHCHO                             | NaBH <sub>4</sub>                               | CH <sub>2</sub> =CHCH <sub>2</sub> OH            |
| E        | (CH₃)₃COH                                          | NaBH <sub>4</sub>                               | no reaction                                      |
| F        | CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub>  | MnO₄ <sup>−</sup> /H⁺<br>heat under<br>reflux   | no reaction                                      |

each correct answer gets (1)

(7 × 1)


(ii)

| reaction | colour at the beginning of the reaction | colour at the end of the reaction |
|----------|-----------------------------------------|-----------------------------------|
| В        | blue                                    | brick red                         |

each correct answer gets 1

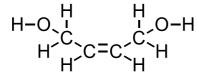
(1 +1 + 1) [10]

(b) (i)



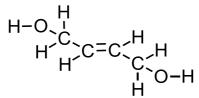
(1)

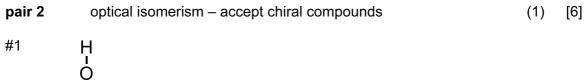
(1)

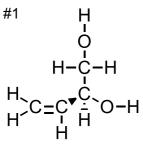

(ii) red or orange

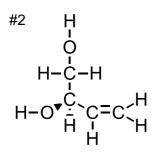
[Total: 12]

[2]


|   | Page 6 |                                                                                                                                                |      | Mark Scheme                                                 | Syllabus | Paper | •   |
|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------|----------|-------|-----|
|   |        |                                                                                                                                                |      | GCE AS/A LEVEL – October/November 2012                      | 9701     | 22    |     |
| 5 | (a)    | <ul> <li>(a) (i) carboxylic acid or alcohol present or<br/>carboxylic acid and alcohol present<br/>not acid or carboxyl or hydroxyl</li> </ul> |      | oxylic acid and alcohol present                             |          |       |     |
|   |        |                                                                                                                                                |      | oxylic acid <b>not</b> present <b>or</b><br>alcohol present |          | (1)   |     |
|   |        | (iii)                                                                                                                                          | alke | ne <b>or</b> >C=C< present                                  |          | (1)   | [3] |
|   |        |                                                                                                                                                |      |                                                             |          |       |     |


(b) (i)





each correct structure gets (1)  $(4 \times 1)$ 

| (ii) pair 1 | geometrical <b>or</b> <i>cis-trans</i> <b>or</b> <i>E</i> / <i>Z</i> isomerism | (1) |
|-------------|--------------------------------------------------------------------------------|-----|
|             |                                                                                |     |









[Total: 9]