MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

F	Page	2				•
		GCE AS/A LEVEL – October/November 2012 9701				
l (a	a) Zn no		Zn(OH) ₂ ZnO r other compounds of Zn		(any 2)	[2]
(k	o) (i)		nsure all of the water of crystallisation had been driven c at constant mass	off or	(1)	
	(ii)	mas	s of ZnSO ₄ = 76.34 – 74.25 = 2.09 g		(1)	
	$M_{\rm r}$ ZnSO ₄ = 65.4 + 32.1 + (4 × 16.0) = 161.5					
		allow use of Zn = 65 and/or S = 32 to give values between 161		61 and 161.5	(1)	
		$n(\text{ZnSO}_4) = \frac{2.09}{161.5} = 0.01294 = 1.29 \times 10^{-2}$				
		ZnS	$O_4 = 161$ gives 1.30×10^{-2}		(1)	
	(iii) mas	s of H ₂ O driven off = 77.97 – 76.34 = 1.63 g		(1)	
		<i>n</i> (H ₂	$O) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$		(1)	
	(iv) 1.29	\times 10 ⁻² mol ZnSO ₄ are combined with 9.1 \times 10 ⁻² mol H ₂	С		
		1 ma	ol ZnSO ₄ is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$			
		= 7.0	$054 \equiv 7 \text{ mol } H_2O$			
			ver must be expressed as a whole number v ecf on candidate's answers to (b)(ii) and (b)(iii)		(1)	[7]
(0	c) (i)	<i>n</i> (Zr) = n (CH ₃ CO ₂) ₂ Zn.2H ₂ O		(1)	
		<i>n</i> (Zn	$= \frac{0.015}{65.4} = 2.290 \times 10^{-4}$			
		= 2.2	29 × 10 ⁻⁴		(1)	
			s of crystals = 2.29 × 10 ⁻⁴ × 219.4 = 0.0502655 g 05 g = 50 mg		(1)	
	(ii)	cond	concentration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{0.005} = 0.0458$			
		$= 4.58 \times 10^{-2} \text{ mol dm}^{-3}$		(1)		
		allov	v correct answers if Zn = 65 is used			[4]
					[Tota	l: 13]

	Page 3		;		Marl	k Scheme			Syllal	ous	Paper	
E	. u	300	GCE AS/A LEVEL – October/November 2012		970		21					
2	(a)	(i)	therr	mal stability d	lecreases do	own Group V	/11				(1)	
		(ii)	the t H—2 sma	C <i>l</i> to I, atom bonding pair i X bond becor ller orbital ov ce H—X bond	s further from nes longer c erlap occurs	m the nucle or					(1) (1)	[3]
	(b)	K _c =	= [[H ₂]	$\frac{\mathrm{HI}^2}{\mathrm{J} \times \mathrm{[I_2]}}$								(1)
		no	units ·	– must be cle	early stated						(1)	[2]
	(c)	(i)		hange as no units o	r						(1)	
			-	e no. of mole		s each side	of equili	brium			(1)	
		(ii)	$K_{\rm c}$ in	librium move acreases with	decreasing		e or				(1)	
				ard reaction i rse reaction i							(1)	[4]
	(d)	equ	al mo iil. mc iil. coi			$H_{2}(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$	+	$I_{2}(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$		HI(g) 0 2y <u>2y</u> 1	(1)	
		K _c =	$=\frac{H}{[H_2]}$	$\frac{\mathrm{HI}^2}{\mathrm{I} \times \mathrm{[I_2]}} = \frac{\mathrm{(}}{\mathrm{(}0.\mathrm{(})}$	$(2y)^2 = 5$ $(2-y)^2 = 5$	9					(1)	
		(0.0	<u>2y</u>)2 – y	$ = \sqrt{59} = 77$	7							
		2y =	= (7.7	′ × 0.02) – 7.7	7y							
		9.7	y = 0.	154								
		give	es y =	$\frac{0.154}{9.7} = 0.0$	159= 0.016						(1)	
		at e	quili	brium								
				$2 \times 0.016 = 0.02$ $p(I_2) = (0.02 - 0.02)$		004					(1)	
		allo	w ecf	where possi	ble							[4]

[Total: 13]

	Pa	ge 4		Mark Scheme	Syllabus	Paper	
			GCE	AS/A LEVEL – October/November 2012	9701	21	
3	(a)	(i)	$N_2(g) + 3H_2(g)$ $N_2(g) + 3H_2(g)$	$(a) \Rightarrow 2NH_3(g)$ or $(b) \rightarrow 2NH_3(g)$			
			state symbols	required		(1)	
		(ii)	pressure	between 60 and 250 atm or between 60 × 10 ⁵ Pa and 250 × 10 ⁵ Pa		(1)	
			temperature	between 300 and 550 °C		(1)	
			catalyst	iron / iron oxide		(1)	
		(iii)		of HNO_3 / as a cleaning agent / refrigerant blosives / to remove SO_2 from combustion pro-			
	(b)	(i)	NH₄C <i>l</i> and Ca both formula			(1)	
		(ii)	2NH₄C <i>l</i> + Ca(NH₄ ⁺ + OH ⁻ —	$OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O \text{ or}$ $\rightarrow NH_3 + H_2O$			
			correct produc correctly bala			(1) (1)	
		(iii)	CaO			(1)	
				d / it is basic / it does not react with NH_3 or $_4O_{10}$ and H_2SO_4 are acidic / react with NH_3		(1)	[5]
	((c)	H H-N: - H correct display	$\vdash H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H - N \rightarrow H \\ H \end{bmatrix}^{+}$			

correct displayed eqn.,		
with positive charge clearly shown	(1)	
lone pair on NH_3	(1)	
co-ordinate / dative bond clearly shown	(1) [[3]

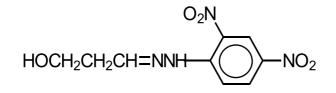
Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	21

4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic products
А	(CH ₃) ₃ COH	Cr₂O7 ^{2−} /H⁺ heat under reflux	no reaction
В	CH ₃ CH ₂ CHO	Fehling's reagent warm	CH₃CH₂CO₂H or CH₃CH₂CO₂ [−]
С	HCO ₂ CH(CH ₃) ₂	NaOH(aq) warm	HCO₂Na or HCO₂ [−] (CH₃)₂CHOH
D	CH ₂ =CHCHO	NaBH ₄	CH ₂ =CHCH ₂ OH
E	(CH₃)₃COH	NaBH ₄	no reaction
F	CH ₃ CH ₂ COCH ₃	MnO₄ [−] /H⁺ heat under reflux	no reaction

each correct answer gets (1)

(7 × 1)


(ii)

reaction	colour at the beginning of the reaction	colour at the end of the reaction
В	blue	brick red

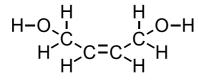
each correct answer gets 1

(1 +1 + 1) [10]

(b) (i)

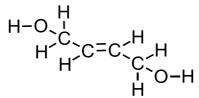
(1)

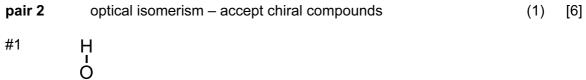
(1)

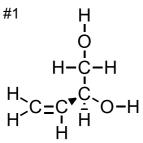

(ii) red or orange

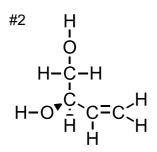
[Total: 12]

[2]


	Page 6			Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – October/November 2012	9701	21	
5	(a)	(i)	carb	oxylic acid or alcohol present or oxylic acid and alcohol present acid or carboxyl or hydroxyl		(1)	
		(ii)		oxylic acid not present or alcohol present		(1)	
		(iii)	alke	ne or >C=C< present		(1)	[3]


(b) (i)




each correct structure gets (1) (4×1)

(ii) pair 1	geometrical or <i>cis-trans</i> or <i>E</i> / <i>Z</i> isomerism	(1)

[Total: 9]