MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

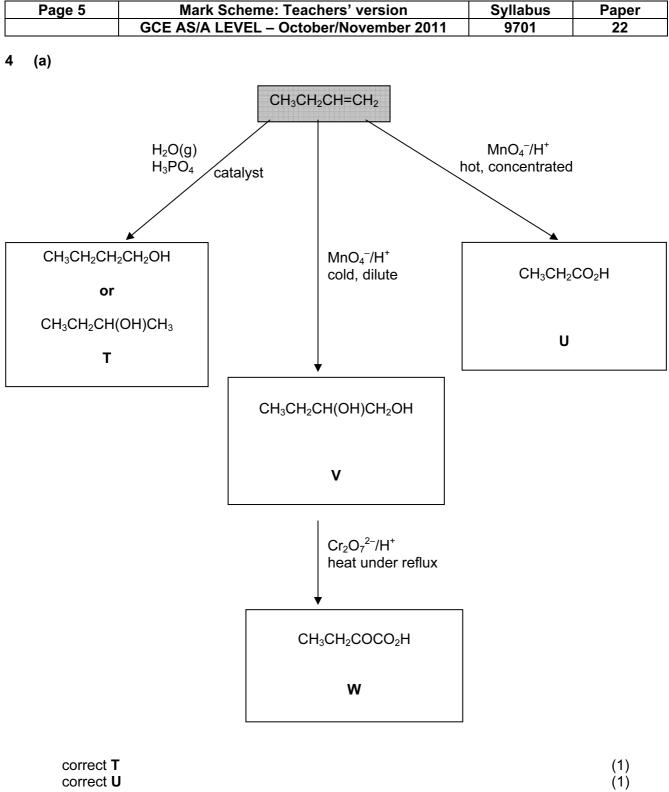
	Page 2	Mark Scheme: Teachers' version Syllabus			
		GCE AS/A LEVEL – October/November 2011	9701	22	
1	(a) (i) ma	ss of C = $\frac{12 \times 0.352}{44}$ = 0.096g		(1)	
	n(C	$C) = \frac{0.096}{12} = 0.008$		(1)	
	(ii) ma	ss of H = <u>2 × 0.144</u> = 0.016g 18		(1)	
	n(H	$\frac{1}{1} = \frac{0.016}{1} = 0.016$		(1)	
	(iii) ma	ss of oxygen = 0.240 - (0.096 + 0.016) = 0.128g		(1)	
	n(C	$(0) = \frac{0.128}{16} = 0.008$		(1)	
	allo	ow ecf at any stage			[6]
	(b) C:H:	O = 0.008: 0.016 : 0.008 = 1:2:1			
	allow C	: H : O = <u>0.096</u> : <u>0.016</u> : <u>0.128</u> = 1:2:1 12 1 16			
	gives C	H ₂ O		(1)	[1]
	(c) (i) <i>M</i> _r	$= mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$		(1)	
		= 59.89			
	allo	ow 59.9 or 60		(1)	
	(ii) C ₂ ł	H ₄ O ₂		(1)	[3]
	(d) CH₃CO	₂ H		(1)	
	HCO ₂ C	H ₃		(1)	[2]
	(e) the only	\prime products of the reaction are the two oxides H_2O and CO	O ₂ and copper	(1)	[1]
				[Total:	13]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – October/November 2011	9701	22	
2	c	correct	S ⁺ (g) + e [−] equation state symbols		(1) (1)	[2]
	e	electror electror	a to Ar , is are added to the same shell/have same shielding is are subject to increasing nuclear charge/proton numb is are closer to the nucleus or atom gets smaller	ber	(1) (1) (1)	[3]
	(c) (in M in A	and A1 Ag outermost electron is in 3s and A1 outermost electron is in 3p electron is at higher energy or		(1)	
		is f is n	urther away from the nucleus or nore shielded from the nucleus		(1)	
	(i	, for	nd P S one 3p orbital has paired electrons and P 3p sub-shell is singly filled		(1)	
		pai	red electrons repel		(1)	[4]

(d) (i) and (ii)

element	Na	Mg	Al	Si	Р	S	
conductivity	high	high		moderate	low	low	
melting point	low	high		high	low	low	
	(1)	(1)		(1)	(1)	(1)	
one mark for each correct column							

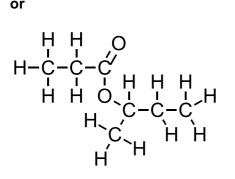
(e) germanium/Ge


(1) [1]

[5]

[Total: 15]

Page 4			Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9701	22	
3	(a) the	overall enthalpy change/energy change/ ΔH for a reaction		(1)	
	is ir	ndependent of the route taken or			
	is ir	is independent of the number of steps involved provided the initial and final conditions are the same		(1)	[2]
	(b) (i)	(b) (i) $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$		(1)	
	(ii)	(ii) heat produced = m × c × δ T = 30.0 × 4.18 × 5.2 = 652.08 J per 0.0200 mol of K ₂ CO ₃		(1)	
	(iii)	$0.020 \text{ mol } K_2 CO_3 \equiv 652.08 \text{ J}$			
		1 mol $K_2CO_3 = \frac{652.08 \times 1}{0.0200} = 32604 \text{ J}$			
		enthalpy change = -32.60 kJmol ⁻¹		(1)	
	(iv)	to prevent the formation of KHCO ₃ or to ensure complete neutralisation		(1)	[4]
	(c) (i)	$KHCO_3 + HCl \to KCl + H_2O + CO_2$		(1)	
	(ii)	heat absorbed= m × c × δ T = 30.0 × 4.18 × 3.7 = 463.98 J per 0.0200 mol of KHCO ₃		(1)	
	(iii)	$0.020 \text{ mol KHCO}_3 = 463.98 \text{ J}$			
		1 mol KHCO ₃ ≡ <u>463.98 × 1</u> = 23199 J 0.0200			
		enthalpy change = +23.20 kJmol ⁻¹		(1)	[3]
	(d) ∆ <i>H</i>	= 2 × (+23.20) – (–32.60) = +79.00 kJ mol ⁻¹		(2)	[2]


[Total: 11]

	(1)
correct V	(1)
correct >CO group in W	(1)
correct –CO ₂ H group in W	(1) [5]

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9701	22

or

correct structures correctly displayed ester group (1) (1) [2]

(1)

[Total: 7]

- (a) (i) 1 primary (1) (1) alcohol not hydroxyl
 - 2 aldehyde not carbonyl

(ii)

5

test 1				
reagent	Na	PCl ₃ /PCl ₅ /PBr ₃	RCO₂H/H⁺	
observation	gas/H ₂ /effervescence/ fizzing	HC <i>t</i> /HBr steamy fumes	fruity smell	
test 2				
reagent	Tollens' reagent	Fehling's reagent	2,4-dinitro- phenylhydrazine	
observation	Ag mirror/silver/ black ppt	brick-red ppt red ppt	orange/red/yellow ppt/solid	

only award the observation mark if reagent is correct

(4) [7]

Page 7	Page 7 Mark Scheme: Teachers' version Syll			r
	GCE AS/A LEVEL – October/November 2011	9701	22	
(b) (i)				
(b) (i) H(<u>) —</u>			
	ОН		(1)	
			(-)	
(ii)				
	0			
	_↓ _OH			
HC	J M			
	0		(1)	
	0			(1)

5 (c)

route	starting	first	intermediate X	second	intermediate Y	third	final
A/1	compound HOCH ₂ CHO	reagent PCl_3 PCl_5 $SOCl_2$ etc.	C <i>I</i> CH₂CHO	reagent K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH ⁻ Tollens' or Fehling's reagents	т С <i>1</i> СН ₂ СО ₂ Н	reagent NH₃	compound H ₂ NCH ₂ CO ₂ H
A/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO₄/OH ⁻ Tollens' or Fehling's reagents	BrCH₂CO₂H	NH3	H ₂ NCH ₂ CO ₂ H
B/1	HOCH₂CHO	PC <i>l</i> ₃ PC <i>l</i> ₅ SOC <i>l</i> ₂ etc.	C/CH₂CHO	NH₃	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH ⁻ Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
B/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	NH3	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH [−] Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
с	HOCH₂CHO	Tollens' or Fehling's reagents	HOCH ₂ CO ₂ H	KBr/conc. H₂SO₄	BrCH₂CO₂H	NH_3	H ₂ NCH ₂ CO ₂ H
mark		(1)	(1)	(1)	(1)	(1)	

[5]

[Total: 14]