MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	22

1 (a) the actual number of atoms of each element present (1)

in one molecule of a compound (1)

(b)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2 O$$

 $x CO_2(1)$
 $\frac{y}{2} H_2 O(1)$
[2]

- (c) (i) oxygen/O₂(1)
 - (ii) carbon dioxide/CO₂(1)
 - (iii) 10 cm³ (1)
 - (iv) $20 \text{ cm}^3(1)$ [4]

(d)
$$C_X H_y + (x + \frac{y}{4})O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

10 cm³ 20 cm³ 10 cm³

1 mol of $C_x H_y$ gives 1 mol of CO_2

whence
$$x = 1$$
 (1)

1 mol of $C_x H_y$ reacts with 2 mol of O_2

whence
$$\left(x + \frac{y}{4}\right) = 2$$

and y = 4(1)

molecular formula is $CH_4(1)$

[3]

[2]

[Total: 11]

	Page 3		6	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE A/AS LEVEL – October/November 2010	9701	22	
2	(a)	N_2	+ 3H	$I_2 \Rightarrow 2NH_3(1)$		[1]	
	(b)	terr	nperat	ure between 300 and 550°C (1)			
			correct explanation of effect of temperature on rate of formation of NH_3 or on position of equilibrium (1)				
		cat	alyst o	of iron or iron oxide (1)			
		to s	speed	up reaction or to reduce $E_a(1)$		[4]	
	(c)	or e or i	explos nylon	ture of HNO₃ sives leaning agent			
				efrigerant (1)		[1]	
	(d)	fert	iliser i	in rivers causes excessive growth of aquatic plants/alg	jae (1)		
		whe	en pla	nts and algae die O_2 is used up/fish or aquatic life die	(1)	[2]	
	(e)	(i)	со	by incomplete combustion of the hydrocarbon fuel	(1)		
			NO	by reaction between N_2 and O_2 in the engine (1)			
		(ii)	СО	toxic/effect on haemoglobin (1)			
			NO	toxic/formation of acid rain (1)		[4]	
	(f)	(i)	platii	num/Pt – allow palladium/Pd or rhodium/Rh (1)			
		(ii)	2CO	$+ 2NO \rightarrow 2CO_2 + N_2(1)$		[2]	
						[Total: 14]	

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2010	9701	22
3	(a) (i) a compound which contains only carbon and hydrogen (1)				
	(ii)	sepa		[2]	
	(b) (i)	(b) (i) high temperature and high pressure (1)			
		high			
	(ii) C ₁₁		$H_{24} \rightarrow C_5 H_{12} + C_6 H_{12}$ or		
		C₁₁⊦	$H_{24} \rightarrow C_5 H_{12} + 2 C_3 H_6$ or		
		C₁₁⊦	$H_{24} \rightarrow C_5 H_{12} + 3 C_2 H_4 (1)$		[3]

(ii) the straight chain isomer (isomer **B** above) (1)

(c) (i)

it has the greatest van der Waals' forces (1)

because unbranched molecules have greater area of contact/ can pack more closely together (1)

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions (1)

[2]

[6]

Pa	Page 5				e: Teachers' version – October/November 2010	Syllabus 9701	Paper 22
(e)	(i)	heat	released = m	n c δT = 2	00 x 4.18 x 27.5 (1)		
		= 22	990 J = 23.0	kJ (1)			
	(ii)	ii) 23.0 kJ produced from 0.47 g of E					
		2059 kJ produced from $\frac{0.47 \times 2059}{23.0}$ g of E (1)					
		= 42.08 g of E (1)					
	allow ecf in (i) or (ii) on candidate's expressions						[4]
(f)	C₃⊦	H ₆ = 4	2				
	E is	s C₃H ₆					
	for	ecf, E	must be uns	aturated a	and be no larger than $C_5(1)$		[1]
							[Total: 18]
4 (a)	rea	ction 1	l re	eagent	NaOH/KOH (1)		
			s	olvent	H ₂ O/water/aqueous (1)		
	rea	ction 2	2 re	eagent	NH ₃ /ammonia (1)		
			S	olvent	ethanol/C ₂ H ₅ OH/alcohol (1)		
	rea	ction 3	3 re	eagent	NaOH/KOH (1)		
			SC	olvent	ethanol/C ₂ H ₅ OH/alcohol (1)		[6]
(b)	with	with $CH_3CH_2CH_2CH_2I$ rate would be faster (1)					
	C-I	C-I bond is weaker than C-Br bond (1)					
		-I bond energy is 240 kJ mol ⁻¹ , C-Br bond energy is 280 kJ mol ⁻¹ ata must be quoted for this mark (1)					[3]
(c)) non-toxic non-flammable						
	vola	atile/lo	w bp	unreacti	ve (any 2)		[2]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2010	9701	22
	(d)	()	en a covalent bond breaks the two electrons in the bond shared between the two atoms (1)	I	
		(ii) CC	$l_2 F_2 \rightarrow CC l F_2 + C l$ (as minimum)		
		allo	w $CCl_2F + F(1)$		[2]
	(e)	they are	flammable (1)		[1]
					[Total: 14]
5	(a)	NaBr/so	dium bromide		[1]
	(b)	Br ₂ /broi	nine or SO ₂ /sulfur dioxide		[1]
	(c)	concen or	rated sulfuric acid is an oxidising agent		
			oric(V) acid is not an oxidising agent		[1]
					[Total: 3]