

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

CHEMISTRY 9701/21

Paper 2 Structured Questions AS Core

October/November 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

For Examiner's Use					
1					
2					
3					
4					
5					
Total					

This document consists of 11 printed pages and 1 blank page.

Answer	all	the	questions	in	the	snaces	nrovided
Allowei	an	เมเษ	questions	111	แเษ	Spaces	provided.

For Examiner's Use

1 Magnesium, Mg, and radium, Ra, are elements in Group II of the Periodic Table.

Magnesium has three isotopes.

(a)	Explain	the	meaning	of the	term	isotope.
-----	---------	-----	---------	--------	------	----------

 	[2]

A sample of magnesium has the following isotopic composition by mass.

isotope mass	24	25	26
% by mass	78.60	10.11	11.29

(b) Calculate the relative atomic mass, $A_{\rm r}$, of magnesium to four significant figures.

$$A_{r} = \dots [2]$$

Radium, proton number 88, and uranium, proton number 92, are radioactive elements.

For Examiner's Use

The isotope ²²⁶Ra is produced by the radioactive decay of the uranium isotope ²³⁸U.

(c) Complete the table below to show the atomic structures of the isotopes $^{226}\mathrm{Ra}$ and $^{238}\mathrm{U}.$

	number of					
isotopes	protons	neutrons	electrons			
²²⁶ Ra						
²³⁸ U						

[3]

(d)	Radium, like other Group II elements, forms a number of ionic compounds.						
	(i)	What is the formula of the radium cation?					
	(ii)	Use the <i>Data Booklet</i> to suggest a value for the energy required to form one mole of the gaseous radium cation you have given in (i) from one mole of gaseous radium atoms. Explain your answer.					
		[0]					

[Total: 10]

2 Radium was discovered in the ore pitchblende by Marie and Pierre Curie in 1898, and the metal was first isolated by them in 1910.

For Examiner's Use

The metal was obtained by first reacting the radium present in the pitchblende to form insoluble radium sulfate which was converted into aqueous radium bromide. This solution was then electrolysed using a mercury cathode and a carbon anode.

		. cooling a more of a contract of the contract
(a)	ium has chemical reactions that are typical of Group II metals and forms ionic pounds.	
	(i)	What is the characteristic feature of the electronic configurations of all Group II metals?
	(ii)	Radium sulfate is extremely insoluble. From your knowledge of the simple salts of Group II metals, suggest another very insoluble radium salt.
		[2]
(b)		ing their electrolysis of aqueous radium bromide, the Curies obtained radium at the lode and bromine at the anode.
		e half-equations for the two electrode reactions that take place during this trolysis.
	ano	de
	ario	
	cath	ode[2]
(c)	(i)	Describe what you would see when magnesium reacts with
		cold water,
		steam
	(ii)	Write an equation for the reaction with steam.
		[5]

(d)	Rac	lium reacts vigorously when added to water.	For
	(i)	Write an equation, with state symbols, for this reaction.	Examiner's Use
	(ii)	State two observations that could be made during this reaction.	
	(iii)	Suggest the approximate pH of the resulting solution.	
	` ,		
((iv)	Will the reaction be more or less vigorous than the reaction of barium with water? Explain your answer.	
		[6]	
		[Total: 15]	

3 Alkanes such as methane, CH₄, undergo few chemical reactions. Methane will, however, react with chlorine but not with iodine.

For Examiner's Use

Relevant standard enthalpy changes of formation for the reaction of methane with chlorine to form chloromethane, CH_3Cl , are given below.

	$\Delta H_{\rm f}^{\rm o}/{\rm kJ~mol^{-1}}$
CH ₄	– 75
CH ₃ Cl	-82
HC1	-92

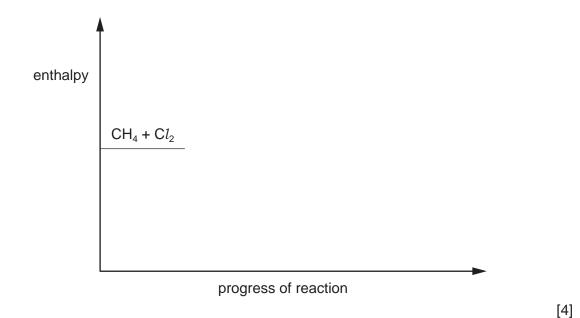
(a) (i) Use the data to calculate $\Delta H_{\text{reaction}}^{\Phi}$ for the formation of CH₃Cl.

$$\mathrm{CH_4}$$
 + $\mathrm{C}l_2$ \rightarrow $\mathrm{CH_3C}l$ + $\mathrm{HC}l$

(ii) The corresponding reaction with iodine does not take place.

Use bond energy data from the *Data Booklet* to calculate a 'theoretical value' for $\Delta H_{\rm reaction}$ for the following equation.

$$CH_4 + I_2 \rightarrow CH_3I + HI$$


(iii) Suggest why this reaction does **not** in fact occur.

[5]

(b)	(i)	By using equations, describe the mechanism of the reaction between chlorine and methane to form chloromethane, $\mathrm{CH_3C}\mathit{l}$.
		Identify, by name, the separate steps of the overall reaction.
	(ii)	What is the intermediate organic species in this reaction?
		[7]

(c) The energy of activation for the formation of CH₃Cl is 16 kJ mol⁻¹. Use this figure and your answer to (a)(i) to complete the reaction pathway diagram below showing the formation of CH₃Cl from CH₄ and Cl₂. Show clearly the intermediate organic species and the final products. Indicate on your sketch the relevant enthalpy changes and their values.

[Total: 16]

For Examiner's Use

		different compounds, A – F , are carbon atoms in its molecule.	given below.
CH ₃ C	CH=CHCH ₃	CH ₃ CH ₂ COCH ₃	CH ₂ =CHCH ₂ CH ₃
	A	В	С
CH ₃ CH	₂ CH(OH)CH ₃	HOCH ₂ CH ₂ CH ₂ CH ₂ OH	$CH_3CH_2OCH_2CH_3$
	D	E	F
(a) (i) (ii)	What is the empirical Draw the skeletal form	formula of compound E ? mula of compound D .	
(iii)	molecular formula. W	do not show all of the isome hich two compounds each sho merism does each compound s	w different types of isomerism
	compound	type of isomerism	[4]
Compou	und D may be converte	d into compound C .	
(b) (i)	(b) (i) What type of reaction is this?		
(ii)			
(iii)			
			[3]

4

For Examiner's Use

Compound A may be converted into compound B in a two-stage reaction.			
	$CH_3CH=CHCH_3 \xrightarrow{stage\;I} intermediate \xrightarrow{stage\;II} CH_3CH_2COCH_3$		
(c)	(i)	What is the structural formula of the intermediate compound formed in the sequence?	his
	(ii)	Outline how stage I may be carried out to give this intermediate compound.	
	(iii)	What reagent would be used for stage II?	 [4]
(d)		npounds D and F are isomers. at type of isomerism do they show?	[4]
			[1]

[Turn over www.theallpapers.com

[Total: 12]

For Examiner's Use 5 Three organic compounds, **G**, **H**, and **J**, each have the empirical formula CH₂O. The numbers of carbon atoms in their molecules are shown in the table.

For Examiner's Use

compound G H	number of C atoms
G	1
Н	2
J	3

In \mathbf{H} and in \mathbf{J} , the carbon atoms are bonded directly to one another.

G gives a silver mirror when treated with Tollens' reagent.

 ${\bf H}$ and ${\bf J}$ each give a brisk effervescence with ${\rm Na_2CO_3(aq)}.$

(a) Identify G.		ntify G .	
			[1]
(b)	(i)	What functional group is common to both H and J ?	
	(ii)	Identify H .	
	(iii)	Identify J .	
			[3]

(c) When **J** is heated under reflux with acidified K₂Cr₂O₇, the product, **K**, gives a red-orange precipitate with 2,4-dinitrophenylhydrazine reagent.

Draw the structural formula of K, the compound formed from J.

[1]

(d)	When J is warmed with concentrated sulfuric acid, a cyclic compound, L, is formed L has the molecular formula C ₆ H ₈ O ₄ .		Fo. Examil
	(i)	Suggest a displayed formula for L.	
	<i>(</i> ''')		
	(ii)	What type of reaction occurs when L is formed from J?	
		[2]	
		[Total: 7]	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.