MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 42 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Syllabus	Paper 42				
		GCE A/AS LEVEL – October/November 2009	GCE A/AS LEVEL – October/November 2009 9701					
1	both but <i>or</i> F	ates become less soluble down the group n lattice energy and hydration (are involved) hydration energy decreases more than lattice energy IE becomes less than LE <i>or</i> HE decreases whereas LE to cationic radius increasing)	is almost constant	[1] [1] [1] [3]				
	(b) (i)	$n(CO) = pV/RT = 1.01 \times 10^5 \times 140 \times 10^{-3}/(8.31 \times 450)$) = 3.78					
		or = 140 × (273/450) / 22.4 = 3.79						
		allow= 140 × (298/450) / 24.0 = 3.86		[1]				
	(ii)	n(BaSO ₄) = n(CO)/4 = 0.945 moles (<i>or</i> 0.9475) If RTP used answer is 0.966		[1]				
	(iii)	$M_r = 233$,	[1]					
		so 0.945 mol = $0.945 \times 233 = 220g \Rightarrow 100 \times 220/250$ (or 0.9475 mol $\Rightarrow 220.8g \Rightarrow 88(.3)\%$)	[1]					
		If RTP used answer is 90(.0)%	[4]					
	(c) (i)	from data booklet, $1^{st} IE = 502$; $2^{nd} IE = 966$; sum = 146 so $-460 = 1468 + 180 + 279 - 200 + 640 + LE$ -460 = 2367 + LE	88 kJ mol ⁻¹					
		LE = −2827 kJ mol ^{−1} (−1 for each error)		[3]				

(ii) LE of BaS should be smaller than that of BaO, since S^{2-} is bigger than O^{2-} . [1] **[4]**

[Total: 11]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper				
		GCE A/AS LEVEL – October/November 2009	9701	42				
2	(a) ethylamine > NH_3 , but phenylamine < NH_3							
	in ethylamine, the alkyl group donates electrons to the N, making lone pair more available							
	in phenylamine, the lone pair is delocalised over the ring, so is less available							

(b)

observation when AgNO₃(aq) is added	observation when dilute NH₃(aq) is added	observation when concentrated NH ₃ (aq) is added	
white ppt	dissolves	dissolves	[1]
cream ppt	no reaction / slightly dissolves	dissolves	[1]
(pale) yellow ppt	no reaction	no reaction	[1]
	AgNO ₃ (aq) is added white ppt cream ppt	AgNO3(aq) is addeddilute NH3(aq) is addedwhite pptdissolvescream pptno reaction / slightly dissolves	AgNO3(aq) is addeddilute NH3(aq) is addedconcentrated NH3(aq) is addedwhite pptdissolvesdissolvescream pptno reaction / slightly dissolvesdissolves

[3]

(c) (i) $[Ag^+(aq)] = \sqrt{K_{sp}} = \sqrt{(5 \times 10^{-13})} = 7.1 (7.07) \times 10^{-7} \text{ mol dm}^{-3}$

(ii) AgBr will be less soluble in KBr, due to common ion effect or equilibrium is shifted to the left / or by Le Chatelier's principle [1]
 [2]

(d) (i)
$$K_c = [Ag(RNH_2)_2^+]/[Ag^+][RNH_2]^2$$
 [1]
units are mol⁻² dm⁶ [1]

(ii) assume that most of the Ag⁺(aq) has gone to the complex, then $[Ag^+(aq)] = 7.1 \times 10^{-7}$ $[Ag(NH_3)_2^+] = 0.1$

and
$$[NH_3] = \sqrt{\{[Ag(NH_3)_2^+]/(K_c[Ag^+])\}} = \sqrt{\{0.1/(1.7 \times 10^7 \times 7.1 \times 10^{-7})\}}$$
 [1]
= **0.091** mol dm⁻³ [1]

(iii) When $R = C_2H_5$, K_c is likely to be greater, since the ethyl group will cause the lone pair on N to be more available / nucleophilic / increases basicity [1]

[5]

[Total: 13]

Page 4			Mark Scher	ne: Teachers'	version	Syllabus	Paper
		GCE A	A/AS LEVEL	– – October/No	vember 2009	9701	42
3 (a) Any t	wo fro	va ab for inc	riable oxida ility to form	complexes ploured compou subshell	unds		[1] + [1] [2]
(b) equ:	MnO₄ [−]	- + 8H	* + 5Fe ²⁺ -	\longrightarrow Mn ²⁺ +	5Fe ³⁺ + 4H ₂	2 0	[1]
meth	A T E	Add an e Titrate u End poir	excess of (d ntil end poir nt is first per		d note volume		flask
		Cpear				-	3 points [3] [4]
(c) (i) 2	2 MnO	₄ ⁻ + 5	SO ₂ + 2 H	$_{2}O \rightarrow 2 \operatorname{Mn}^{2+}$	+ 5 SO4 ²⁻ +	4 H⁺	[2]
oxidation numbers:		+7	+4	+2	+6		[1]
(ii) 1	Cr ₂ O	7 ²⁻ + 6	NO ₂ + 2 +	$H^{+} \rightarrow 2 \operatorname{Cr}^{3+} \mathbf{+}$	6 NO ₃ ⁻ + 1	H ₂ O	[2]
oxidation numbers:		+6	+4	+3	+5		[1]
([2] ma	irks for	each equati	on: [1] for bala [1] for tota		x species, e. H_2O and H^*)	[6]
Fe ³⁺ Fe ²⁺	oxidise reduce	ed l [−] (ar es S₂O ₈	eous (cataly nd is reduce ^{2–} (and is ox ing this	/st) d to Fe ²⁺) kidised to Fe ³⁺)		any two po	oints [2] [2]
							[Total: 14]

	Page 5				Teachers' version		Syllabus	Paper
			G	CE A/AS LEVEL – C	october/November	2009	9701	42
4	(a)			quired to break onds in the gas phas	se			[1 [1 [2]
	(b)	purple is	iodir	appens AND HI: pu ne formed (<i>or</i> in an ea rgy becomes smaller	quation: 2HI;	→ H ₂ + I ₂)	,	[1] [1] [1]
	(c)	data nee	eded:		l-F) –328 = 3×158 F) = +174 (kJ mol⁻			[2] [2]
								[2]
								[Total: 7]
5	(a)							
		compo	und	all carbon atoms can be coplanar	not all carbon atoms coplanar			
		Α		\checkmark				
		В			\checkmark			
		С		\checkmark				
		D		\checkmark				
		Е		\checkmark				
	ľ				(4 corre	ect: [2], 3	all 5 correct correct: [1]. <3 (
	(b)	reaction reaction		$Cl_2 + AICl_3 / FeCl_3 / FeCl_3 / FeCl_2 + heat / light / uv /$		l or Fe		[1] [1] [2]
	(c)	(i) H is	C ₆ H ₅	CH₂CI				[1]
		(ii) read	ction T	II: KMnO₄ + heat (+	OH [−])			[1]
		. ,						

• •		Cl_2 + AICl ₃ / FeCl ₃ / Fe / or bromides of AI or Fe Cl_2 + heat / light / uv / hf	[1] [1] [2]
(c) (i)	H is C ₆ H	l₅CH₂CI	[1]
(ii)	reaction	III: $KMnO_4$ + heat (+ OH^-) V: NaOH in water + heat VI: conc H_2SO_4 + heat	[1] [1] [1]
(iii)		III: oxidationV: hydrolysis <i>or</i> nucleophilic substitution	[1] [1] [6]
			[Total: 11]

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
6	Q is Cl P is Cl J is Cl		9701	<u>42</u> [7] [7]
		I: KCN, heat NOT H ⁺ OR HCN aq negates II: SOCl ₂ or PCl ₅ or PCl ₃ BUT aq negates IV: H ₂ + Ni or LiAlH ₄ or NaBH ₄ NOT Sn + HCl		[1] [1] [1] [3]
	• •	IV: reduction VI: nucleophilic substitution <i>or</i> condensation reaction		[1] [1] [2]
	(d) (i) ami (ii) ami			[1] [1] [2] [Total: 14]
7	(a) Primary Seconda Tertiary	Diagram showing peptide bond: (-CHR-)CONH(- ary: Hydrogen bonds (NOT between side chains" Diagram showing N-H···O=C		[1] [1] [1] nose in α-helix [1] + [1] [1] [max 6]
	Interacti	e binds to the active site of the enzyme on with site causes a specific bond to be weakened, (w ge in shape weakens bond(s) / lowers activation energ	,	[1] [1] [2]
		npetitive inhibition ver reaches V_{max}		[1] [1] [2]

[Total: 10]

Pa	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper					
			GCE A/AS LEVEL – October/November 2009	9701	42					
8 (a)) Rat	tio of t	the concentrations of a solute / distribution of solute [1]] in two immiscib	le liquids [1] [2]					
(b))	= [p	esticide in hexane] besticide in water] hence $8.0 = \frac{\text{[pesticide in hexa})}{0.0050 - \text{[pesticide in hexa]}}$	ane] hexane]	[1]					
	Therefore [pesticide in hexane] $x = 0.040 - 8x$ Hence x = 0.0044(g)									
(c)	(c) (i) Ratio would be 3 : 1									
	 (ii) Each chlorine at could be ³⁵C/ or ³⁷C/ Only way of getting M+4 is for both chlorines to be ³⁷C/ (1 in 9 chance) Ratio of peaks M M+2 M+4 									
	9 6 1									
(d)) (i)	Acce	ept dioxins and furans (without specifying)		[1]					
	(ii) PCBs (but don't penalise non-specified dioxins and furans)									
	(iii) Allow : pollution control / environmental legislation / removal of dioxins and furans mill closed down (owtte)									
	(iv)	Five			[1] [4]					
					[Total: 11]					

	Page 8			Mark Sch	eme: Teach	ners' ve	rsion	Syllabus	Paper			
				GCE /	A/AS LEVI	EL – Octobe	er/Nove	ember 2009	9701	42		
9	(a)	Ler	ngth o 3	of DNA	nanosp	here diame 1	eter	cell diameter 2				
		Bot	h ma	rks for co	rect seque	ence, [1] for	cell sm	aller than DNA			[2]	
	(b)	(i) Gaps in structure of shaft much smaller, hence less prone to fracture							to fracture / mor	e flexible	[1]	
		(ii)	Com	posites a	nd carbon	nanotubes	less de	nse than metal	(of comparable	strength)	[1] [2]	
	(c)			-		gy is longer f articles allov		•	but reflect infra	red energy	[1] [1] [2]	
	(d)	(i) Resistance to			corrosion	/ reaction					[1]	
		(ii)	Abili	ty to kill b	acteria / pi	revent bacte	eria mul	iplying			[1]	
		(iii)	Very	much lar	ger surfac	e area mear	ns they	dissolve more	readily		[1] [3]	
	[Total:											