MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

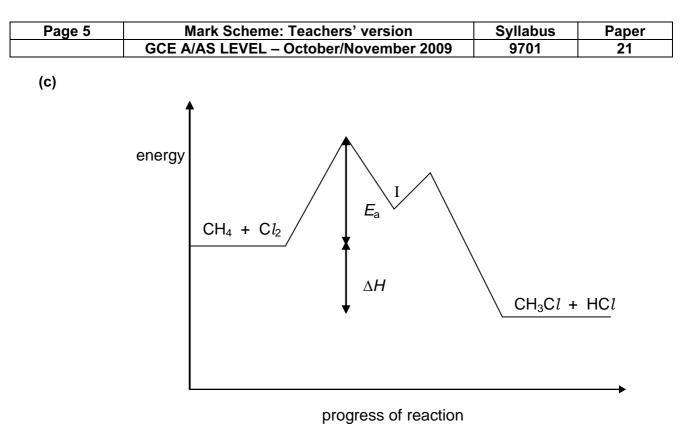
9701/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

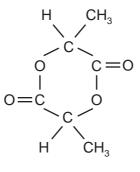
• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

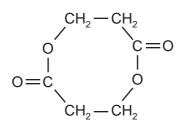
	Page 2			ark Schem				Syllabus	Paper		
				GCE A/	AS LEVEL ·	– October	/Novembe	r 2009	9701	21	
1	(a)		ame proton number/atomic number fferent mass number/nucleon number							(1) (1)	[2]
	(b)	A _r	= <u>(</u> 2	4×78.60)+	(25×10.11) 100		(1)				
			= 18	386.4 + 252. 100	75 + 293.54 0	$-=rac{2432.63}{100}$	9				
				/es A _r = 24 (–1) for mis	I.33 suse of signi	ificant figu	res			(1)	[2]
	(c)				[1		
					isotopes		number o	f			
						protons	neutrons	electrons			
					²²⁶ Ra	88	138	88			
					²³⁸ U	92	146	92			
			if the	ere are no c	for each co orrect colun 1 one mark	nns,				(3 × 1)	[3]
	(d)	(i)	Ra²⁺							(1)	
		(ii)		than (502 + v answers ir	- 966) n the range	1000–140	0 kJ mol⁻¹			(1)	
			or or	must be les size of aton electrons a	ies decreas is than IE fo n increases re further av	r Ba → Ba down Gro vay from n	a ²⁺ up/ ucleus				
					reased shiel	aing dowr	Group			(1)	
			allov	v ecf on ans	swer to (i)				[3]		
							[Total:	10]			

Page 3		;	Mark Scheme: Teachers' version	Syllabus	Paper	,		
				GCE A/AS LEVEL – October/November 2009	9701	21		
2	(a)	(i)		uration ends in s ² e are two electrons in outermost/valence shell		(1)		
		(ii)	RaCO₃	/radium carbonate		(1)	[2]	
	(b)	anc catl	ode hode	$Br^- \rightarrow \frac{1}{2}Br_2 + e^-$ $Ra^{2+} + 2e^- \rightarrow Ra$		(1) (1)	[2]	
	(c)	(i)	water	slow reaction gas bubbles gas is colourless		any 2 (2)		
			steam	Mg glows vigorous reaction white solid formed		any 2 (2)		
		(ii)	Mg + H	$H_2O \rightarrow MgO + H_2$		(1)	[5]	
	(d)	(i)	Ra(s) +	+ 2H ₂ O(I) \rightarrow Ra(OH) ₂ (aq) + H ₂ (g)		eqn. (1) s.s. (1)		
		(ii)	gas eve	dissolves/disappears olved colourless				
			heat ev			any 2 (2)		
		(iii)	10–14			(1)		
		(iv)	becaus	no mark for this alone se reactivity of metals increases down the Group strons are further from nucleus s lower				
			or Ra i	s a stronger reducing agent		(1)	[6]	
					[Total: 1			

	Page	4 Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2009	9701	21	
3	(a) (i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1)	
		$\Delta H^{\circ}_{\text{reaction}} = -82 + (-92) - (-75)$ = -99 kJ mol ⁻¹		(1)	
	(ii)	$\begin{array}{cccccccc} CH_4 & + & \mathrm{I}_2 & \rightarrow & CH_3\mathrm{I} & + & HI \\ broken & C-H & & \mathrm{I}-\mathrm{I} & made & C-\mathrm{I} & & H-\mathrm{I} \\ 410 & & 151 & & 240 & & 299 \end{array}$		(1)	
		$\Delta H^{\circ}_{\text{reaction}} = -240 + (-299) + 410 + 151$ = +22 kJ mol ⁻¹		(1)	
	(iii)	activation energy is too great		(1)	[5]
	(b) (i)	initiation $Cl_2 + uvl \rightarrow 2Cl$ propagation		(1) (1) (1)	
		$CH_4 + Cl \rightarrow CH_3 + HCl$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl$	both ne	eded (1)	
		termination		(1)	
		$\begin{array}{l} CH_3 + CH_3 \ \rightarrow \ C_2H_6 \text{or} \\ CH_3 + Cl \ \rightarrow \ CH_3Cl \text{or} \end{array}$			
		$Cl + Cl \rightarrow Cl_2$		(1)	
	(ii)	CH ₃ /methyl radical		(1)	[7]


correct placement of 16 kJ	(1)	
correct placement of –99 kJ (allow ecf on wrong calculation in (a) (i))	(1)	
intermediate clearly shown at I	(1)	
correct 'double peak' shape	(1)	
second peak lower than first	(1)	[5]

[Total: max 16]


	Page 6			ark Scheme: Te	Syllabus	Paper		
	GCE A/A		AS LEVEL – October/November 2009		9701	21		
4	(a) (i) (ii)	C ₂ H ₅ OH					(1)	
	(1)	\checkmark	/				(1)	
	(iii)							
	. ,			compound	type of isomerism			
				Α	<i>cis-trans</i> or geometrical			
				D	optical			
					are correctly identified omerism is incorrect		(1 + 1)	[4]
	(b) (i)	dehy	/dration/elin	nination			(1)	
	(ii)	conc	:. H ₂ SO ₄ /P ₄ (O ₁₀ /Al ₂ O ₃ /pumice	e etc.		(1)	
	(iii)	CH ₂ =	=CHCH=CH	l ₂ /butadiene/buta	a-1,3-diene		(1)	[3]
	(c) (i)	CH₃(CH ₂ CH(OH))CH ₃			(1)	
	(ii)	stea conc	m ≿. H₂SO₄	with H₃PO₄ cat then water	alyst or		(1 + 1)	
	(iii)	Cr ₂ C	0 ₇ ^{2−} /H ⁺				(1)	[4]
			al group isor ural isomeri					
			ional isome				(1)	[1]
						[Total:	: 12]	

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A/AS LEVEL – October/November 2009	9701	21	
5	(a) G is	s HCH	IO/methanal		(1)	[1]
	(b) (i)	carb not a	oxylic acid/carboxyl/–CO₂H acid		(1)	
	(ii)	H is	CH ₃ CO ₂ H/ethanoic acid		(1)	
	(iii)		$CH_3CH(OH)CO_2H/2$ -hydroxypropanoic acid v HOCH_2CH_2CO_2H/3-hydroxypropanoic acid		(1)	[3]
	(c) K is	s CH ₃ (COCO₂H		(1)	[1]

(d) (i) L is

allow as ecf on HOCH₂CH₂CO₂H/3-hydroxypropanoic acid

(1)

(ii) esterification allow elimination/dehydration/condensation (1) [2]

[Total: 7]