

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 9701/32

Paper 32 Practical Test October/November 2007

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use						
1						
2						
Total						

This document consists of 12 printed pages.

1 Read through question 1 before starting any practical work.

You are provided with the following reagents.

FB 1, 1 mol dm $^{-3}$ sulphuric acid, H $_2$ SO $_4$ **FB 2**, 0.1 mol dm $^{-3}$ potassium iodide, KI **FB 3**, 0.1 mol dm $^{-3}$ sodium thiosulphate, Na $_2$ S $_2$ O $_3$ **FB 4**, 0.1 mol dm $^{-3}$ hydrogen peroxide, H $_2$ O $_2$

starch solution

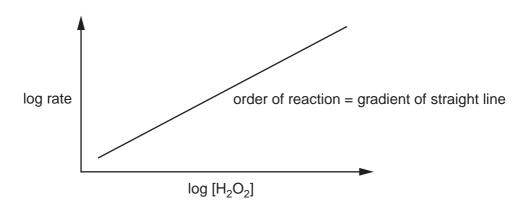
distilled water

In the presence of an acid, iodide ions are oxidised by hydrogen peroxide to iodine.

$$H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(I) + I_2(aq)$$

The rate of reaction can be followed by timing the formation of a fixed amount of iodine in the solution.

If sodium thiosulphate is present in the reaction mixture it reacts with the iodine formed and the solution remains colourless.


$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

When all of the sodium thiosulphate present has reacted, iodine, ${\rm I_2}$, will appear in the solution producing an immediate blue colour with starch indicator.

In a series of experiments where the concentration of a reagent is changed

- 1/time can be used as a measure of rate,
- the volume of the reagent used can be taken as a measure of its concentration providing the total volume of the mixture is kept constant in each experiment.

The order of reaction with respect to hydrogen peroxide can be obtained by plotting a graph of log rate against log $[H_2O_2]$.

(a) Method

Experiment 1

- Fill the burette labelled FB 3 with FB 3 and the burette labelled FB 4 with FB 4.
- Use the measuring cylinder labelled A to put the following solutions into a 250 cm³ conical flask:

20 cm³ of **FB 2**, potassium iodide,

20 cm³ of distilled water.

- Add to the flask from the burette 1.00 cm³ of **FB 3**, sodium thiosulphate.
- Add six drops of starch indicator to the mixture in the flask.
- Run 20.00 cm³ of **FB 4**, hydrogen peroxide, from the second burette into a 100 cm³ beaker
- Use the measuring cylinder **labelled B** to add 20 cm³ of **FB 1**, sulphuric acid, to the hydrogen peroxide in the beaker.
- Tip the contents of the beaker into the conical flask and **immediately** start a stop-clock or note the start time on a clock with a second hand.
- Swirl the flask to mix the reagents.
- Observe the solution and stop the clock or note the time when the solution suddenly turns blue.
- Record the time taken to the nearest second.

	_	_	_	
Tha	tima	taken	io	\sim
1110	111111	TAKEN	15	

Experiment 2

- Empty, thoroughly rinse and drain the conical flask used in experiment 1.
- Use the measuring cylinder **labelled A** to put the following solutions into the 250 cm³ conical flask:

20 cm³ of **FB 2**, potassium iodide,

35 cm³ of distilled water.

- Add to the flask from the burette 1.00 cm³ of **FB 3**, sodium thiosulphate.
- Add six drops of starch indicator to the mixture in the flask.
- Run 5.00 cm³ of **FB 4**, hydrogen peroxide, from the second burette into a 100 cm³ beaker.
- Use the measuring cylinder **labelled B** to add 20 cm³ of **FB 1**, sulphuric acid, to the hydrogen peroxide in the beaker.
- Tip the contents of the beaker into the conical flask and **immediately** start a stop-clock or note the start time on a clock with a second hand.
- Swirl the flask to mix the reagents.
- Observe the solution and again stop the clock or note the time when the solution suddenly turns blue.
- Record the time taken to the nearest second.

The time taken is	S	IS	ken	ta	tıme	ne	- 1
-------------------	---	----	-----	----	------	----	-----

[2]

(b) In experiment 1 you will have obtained the time taken for a 'fast' reaction and in experiment 2 the time taken for a 'slow' reaction.

You are to repeat the experiment with further mixtures in which **only** the concentration of hydrogen peroxide is varied.

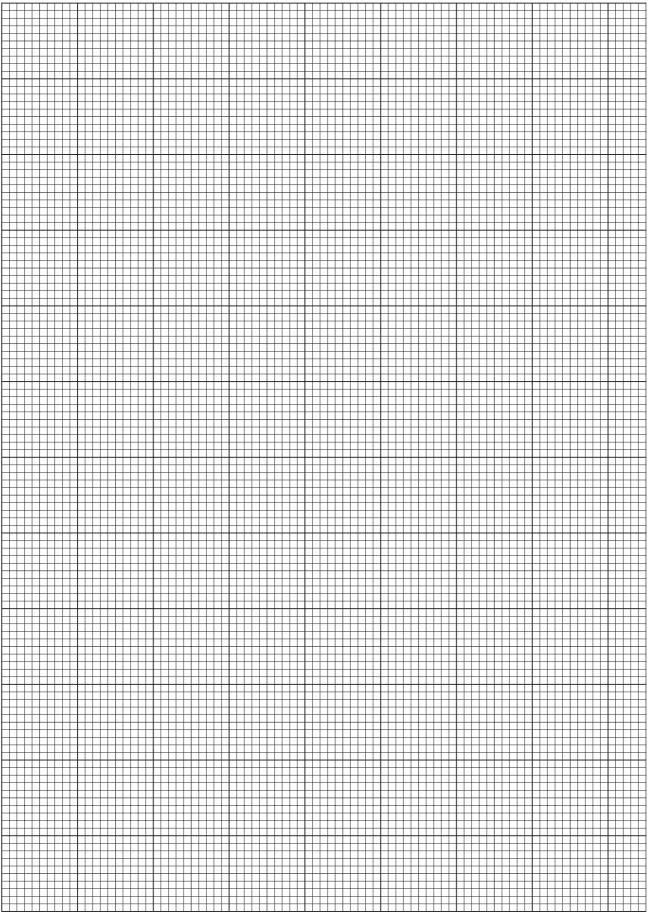
In selecting the mixtures to be used you should consider

- how many mixtures need to be used,
- what concentrations of hydrogen peroxide should be used,
- what range these concentrations should cover,
- that only the concentration of hydrogen peroxide must change.

Remember – you already have reaction times for two mixtures with different concentrations of hydrogen peroxide.

In the space below prepare to record, in an appropriate form, the results of the experiments you will perform and the results of experiments 1 and 2.

Your recorded results should include calculated values to enable you to plot


log (1/time) against log (volume of FB 4).

Carry out the additional experiments and record your results.

i	
ii	
iii	
iv	
V	
vi	
vii	
viii	
ix	
X	
хi	
	ii iii iv v vi viii ix x

[11]

(c) Use the grid below to plot a graph of log (1/time) against log (volume of FB 4). Draw an appropriate straight line through the points plotted.

(d)	Draw construction lin	nes on you	r graph	and	obtain	data	from	them	to	enable	you	tc
	calculate the gradient	t of the grap	h.									

Calculate the gradient of the line drawn, which is the order of reaction with respect to hydrogen peroxide.

The reaction is	order with respect to hydroge	n peroxide, H ₂ O ₂ . [3
-----------------	-------------------------------	--

(e) In experiment 1 burettes and measuring cylinders were used to measure volume.

A burette is graduated to 0.10 cm³ and is usually read to the nearest 0.05 cm³. A 25 cm³ measuring cylinder is graduated to 0.5 cm³.

Estimate the error when measuring a volume of 20 cm³ in a 25 cm³ measuring cylinder.

The error is \pm cm³.

Use this answer and the information above to calculate the percentage error for each volume measurement made in experiment 1. Complete the table below.

solution	apparatus used	volume /cm ³	error /cm ³	% error
FB 1, FB 2, distilled water	25 cm ³ measuring cylinder	20		
FB 3	burette	1.00		
FB 4	burette	20.00		

	เว
identify the most significant source of error in this experiment.	

(f) The experimental method can be modified to enable the rate of reaction with respect to iodide ions, I^- , to be investigated.

You will perform two further experiments using the method for experiment 1 in section (a). You will keep the concentration of hydrogen peroxide constant and reduce the concentration of iodide ions.

First copy your reaction time from experiment 1 in section (a) into the table below. Then complete the table below to show the volumes of **FB 2** and distilled water you will use in these two further experiments.

Carry out each experiment as before and record the time taken in each case.

	volume FB1 (H ₂ SO ₄) /cm ³	volume FB2 (KI) /cm ³	volume water /cm ³	volume FB3 (Na $_2$ S $_2$ O $_3$) $/$ cm 3	volume FB4 (H_2O_2) $/cm^3$	reaction time /s
experiment 1 in section (a)	20	20	20	1.00	20.00	

experiment i	20		1.00	20.00	
experiment ii	20		1.00	20.00	

[1]

[Total: 25]

(g)	Use the experimental results from the three experiments to draw a conclusion as to how the rate of reaction is affected by changing the concentration of iodide ions.
	[1]

2 The three solutions FB 5, FB 6, and FB 7 each contain one of the following.

copper(II) chloride, ${\rm CuC}l_2$ chromium(III) chloride, ${\rm CrC}l_3$ nickel(II) sulphate, ${\rm NiSO}_4$

(a) Use information from the Qualitative Analysis Notes on page 12 to select a pair of reagents that you could use to determine which solution contains the sulphate ion.

Carry out the tests and record, in the space below, the reagents used and the observations made.

From these tests, solution **FB** contains the sulphate ion. [3]

- **(b)** The solutions containing copper(II) and chromium(III) ions can be distinguished from one another by adding either aqueous sodium hydroxide or aqueous ammonia. Nickel(II) ions behave in a similar way to copper(II) ions with these reagents.
 - Add NaOH(aq) and NH₃(aq) separately to each of the solutions **FB 5**, **FB 6** and **FB 7**. Record your observations in the space below.

From your observations in (a) and (b) identify the solutions containing copper(II) ions

and chromium(III) ions.
Solution contains Cu ²⁺ .
supporting evidence
Solution contains Cr ³⁺ .
supporting evidence
[5]

(c) You are to perform the tests given in the table below on the solid **FB 8** and to comment on the type of compound present in **FB 8**.

Record details of colour changes seen, the formation of any precipitate and the solubility of any such precipitate in an excess of the reagent added.

Where gases are released they should be identified by a test, **described in the appropriate place in your table**.

You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional tests should be attempted.

	test	observations with FB 8
(i)	To 2 cm depth of distilled water in a boiling-tube, add 1 spatula measure of FB 8 .	
	Warm to dissolve the solid and immediately add a 1 cm length of magnesium ribbon.	
(ii)	To 1 cm depth of aqueous sodium hydroxide in a test-tube, add 1 spatula measure of FB 8 .	
	Stir the mixture, then add 2 cm depth of dilute hydrochloric acid.	
	Stir the mixture, then add 3 cm depth of aqueous sodium hydroxide.	

	test	observations with FB 8
(iii)	To 1 cm depth of ethanol in a boiling-tube, add 2 spatula measures of FB 8 and a few drops of concentrated sulphuric acid (CARE: corrosive).	
	Heat the contents of the tube for 1-2 minutes, using the apparatus provided for heating a flammable liquid (CARE).	
	Pour the contents of the tube into a 100 cm ³ beaker full of water.	

From FB 8.	your	obser	vation	ıs, d	Iraw	conc	lusions	about	the	type	of	compound	d presen	ıt in
														 [7]

[Total: 15]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with								
	NaOH(aq)	NH ₃ (aq)							
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess							
ammonium, NH ₄ ⁺ (aq)	ammonia produced on heating								
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.							
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.							
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess							
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution							
iron(II), Fe ²⁺ (aq)	green ppt. insoluble in excess	green ppt. insoluble in excess							
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess							
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess							
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess							
manganese(II), Mn ²⁺ (aq)	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess							
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess							

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO_3^{2-}	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulphate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.