MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pag	je 2		Mark Scheme	Syllabus	Pape	ər
			GCE A/AS LEVEL – October/November 2007	9701	02	
l (a)		1				
			1s 2s			
		spł	herical (1) larger spherical (1)			
	100	5	× ×			
			2p.			
	dou	ble lob	bes along the <i>x</i> -axis (1)			[3]
(b)	(i)	attract	tion botwoon bonding clostrons and public		(1)	
(b)	(1)		tion between bonding electrons and nuclei		(1)	
		attract	tion is electrostatic		(1)	
((ii)	H ₂	s-s overlap clearly shown			
			must not be normal dot/cross diagram		(1)	
		HC1	s-p overlap clearly shown			
			overlap must involve s and p orbitals		(1)	[4]
(c)	(i)	bondir	ng electrons are unequally shared or			
		the mo	olecule has a dipole/δ+ and δ- ends to molecule		(1)	
((ii)	the H	and C <i>l</i> atoms have different electronegativities			
		or chl	orine is more electronegative than hydrogen		(1)	[2]

Pa	ge 3	Mark Scheme GCE A/AS LEVEL – October/November 2007	Syllabus 9701	Pape 02	r
(d)	ŀ		5701	02	
	н	ССС			
	allov	two 'sausages' above and below the C-C axis			
		o p orbitals overlapping sideways m one (localised) π bond over two carbon atoms		(1)	[1]
(e)	ΔH_{f}^{e}	= 2(-393.7) + 2(-285.9) - (-1411)			
	= + 5	1.8 kJ mol ⁻¹ (units given in qu.)		(3)	
	pena	lise errors: no 2 for –393.7 no 2 for –285.9			
		wrong sign for –(–1411)			[3]
				[Total	l: 13]
2 (a)	P ₄ (s)	+ $10Cl_2(g) \rightarrow 4PCl_5(s)$			
	or 2	$P(s) + 5Cl_2(g) \rightarrow 2PCl_5(s)$			
	equa	tion		(1)	
	state	symbols		(1)	[2]
(b)	(i) 🤉	iant ionic lattice (may be in diag.)		(1)	
	\$	trong ionic bonds		(1)	
	(ii) :	imple molecular or discrete molecules			
	(may be shown in a diagram)		(1)	
	Ň	vith <u>weak</u> intermolecular forces or			
	7	veak van der Waals' forces			
	I	between them		(1)	[4]
(c)	SiCL	+ $2H_2O \rightarrow SiO_2 + 4HCl$			
	or Si	$Cl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$			
	or Si	$Cl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl$		(1)	[1]

	Page 4			Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – October/November 2007	9701	02	
	(d)	Na	C <i>l</i> pH is	7 allow neutral		(1)	
		PC	l₅ pH is I	between 1 and 4			
		do	not allo	w acidic		(1)	[2]
	(e)	(i)	460 K	Al_2Cl_6		(1)	
			1150 K	$A_lC_{l_3}$		(1)	
		(ii)	correct	dot-and-cross diagram for A <i>l</i> C <i>l</i> ₃		(1)	
		(iii)	correct	displayed structure for Al_2Cl_6		(1)	
			two cor	rrect co-ordinate bonds		(1)	
			CI				[5]
						[Tota	l: 14]
3	(a)	P_4				(1)	
		S ₈				(1)	
		Cl ₂				(1)	[3]
	(b)	(i)	highest	t S ₈ P ₄ C <i>l</i> ₂ lowest			
			allow S	S P C <i>l</i> or names		(1)	
		(ii)	from Sa	$_8$ to P ₄ to C l_2			
			there a	re fewer electrons in each molecule		(1)	
			hence	weaker van der Waals' forces		(1)	[3]

Page 5	5	Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	02	
(c) (i)	S ₂ Ci	$H_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2$			
	n(S ₂	Cl_2) = $\frac{2.7}{135.2}$ = 0.0199 = 0.02		(1)	
	0.02	mol S ₂ C $l_2 \rightarrow \frac{0.96}{32.1}$ = 0.03 mol S			
	1.0 r	nol S ₂ C $l_2 \rightarrow \frac{0.03 \times 1.0}{0.02}$ = 1.5 mol S		(1)	
(iii)	2S ₂ 0	$Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl_2$			
	corre	ect products		(1)	
	bala	nced equation		(1)	[4]
(d) oxio	dation	product is H_2SO_3		(1)	
red	uctior	n product is S		(1)	[2]
				ET a da la	4.07

(1)

[1]

H atoms must be shown.

Structure must not contain any CH₃ groups

	Pa		Mark Scheme Syllabus		Syllabus	s Paper	
				– October/November 2007	9701	02	
	(d)	d) CH _a correct compound					
		н	CH2CH2CH3	correct mirror object/mirror image relationship in 3D		(1)	[2]
	(e)	5	e.g. cyclopent	ane structure			
		allo	w methylcyclobutane or dim	nethylcyclopropane		(1)	[1]
	(f)	e.g					
		0-0-1	ta C2H5 CH3 C2H5 				
			repeat units must be showr tive positions of $-CH_3$ and –	$_{\rm C_2H_5}$ may differ from those sho	own above	(1)	[1]
						[To	otal: 9]
5	(a)	(i)	$Cr_{2}O_{7}^{2-}/H^{+}$	allow MnO ₄ ^{-/} H ⁺		(1)	
		(ii)	from orange to	or purple to colourless			
			green or green/blue			(1)	[2]
	(b)	(i)	to ensure complete oxidation	on of $-CH_2OH$			
			or to keep reactants in the	reaction flask		(1)	
		(ii)	CH₃CHO/ethanal			(1)	[2]
	(c)	(i)	CH ₃ I/iodomethane			(1)	
		(ii)	nucleophilic substitution or	hydrolysis		(1)	[2]

Page 7	Mark Scheme	Syllabus	Pape	er
	GCE A/AS LEVEL – October/November 2007	9701	02	
(d) step l				
red P + I	$_2$ or HI(aq) or KBr/conc H $_3$ PO $_4$ or PI $_3$		(1)	
heat but	room temperature for PI_3		(1)	
step II				
KCN in a	queous ethanol		(1)	
in aqueo	us ethanol, heat under reflux		(1)	
allow aqu	ueous ethanol in either place			
step III				
aqueous	mineral acid (not nitric acid)			
or NaO⊦	l(aq) then aqueous mineral acid		(1)	
heat			(1)	[6
			[Tota	l: 12