MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02
Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	02

1 (a)

15
spherical (1)

2 s larger spherical (1)

2 p .
double lobes along the x-axis (1)
(b) (i) attraction between bonding electrons and nuclei
attraction is electrostatic
(ii) H_{2} s-s overlap clearly shown
must not be normal dot/cross diagram
HCl s-p overlap clearly shown
overlap must involve s and p orbitals
(c) (i) bonding electrons are unequally shared or the molecule has a dipole/ $\delta+$ and δ - ends to molecule
(ii) the H and Cl atoms have different electronegativities or chlorine is more electronegative than hydrogen

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	02

(d)

allow two 'sausages' above and below the C-C axis
or two p orbitals overlapping sideways
to form one (localised) π bond over two carbon atoms
(e) $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}=2(-393.7)+2(-285.9)-(-1411)$
$=+51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (units given in qu.)
penalise errors: no 2 for -393.7
no 2 for -285.9
wrong sign for $-(-1411)$

2 (a) $\mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})$
or $2 \mathrm{P}(\mathrm{s})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{5}(\mathrm{~s})$
equation
state symbols
(b) (i) giant ionic lattice (may be in diag.)
strong ionic bonds
(ii) simple molecular or discrete molecules
(may be shown in a diagram)
with weak intermolecular forces or
weak van der Waals' forces
between them
(c) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$
or $\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$
or $\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{HCl}$

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	02

(d) NaCl pH is 7 allow neutral
$\mathrm{PCl}_{5} \mathrm{pH}$ is between 1 and 4
do not allow acidic
(e) (i) $460 \mathrm{~K} \quad \mathrm{Al}_{2} \mathrm{Cl}_{6}$
$1150 \mathrm{~K} \mathrm{AlCl}_{3}$
(ii) correct dot-and-cross diagram for AlCl_{3}
(iii) correct displayed structure for $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
two correct co-ordinate bonds

Cl
Cl Ct

3 (a) P_{4}
S_{8}
Cl_{2}
(1)
(b) (i) highest S_{8} \qquad P_{4} \qquad Cl_{2} lowest
allow S ... P ... Cl or names
(ii) from S_{8} to P_{4} to Cl_{2}
there are fewer electrons in each molecule
hence weaker van der Waals' forces

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL - October/November 2007	9701	02

(c) (i) $\mathrm{S}_{2} \mathrm{Cl}_{2}=(2 \times 32.1)+(2 \times 35.5)=135.2$

$$
\begin{align*}
& \mathrm{n}\left(\mathrm{~S}_{2} \mathrm{Cl}_{2}\right)=\frac{2.7}{135.2}=0.0199=0.02 \tag{1}\\
& 0.02 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{Cl}_{2} \rightarrow \frac{0.96}{32.1}=0.03 \mathrm{~mol} \mathrm{~S} \\
& 1.0 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{Cl}_{2} \rightarrow \frac{0.03 \times 1.0}{0.02}=1.5 \mathrm{~mol} \mathrm{~S} \tag{1}
\end{align*}
$$

(iii) $2 \mathrm{~S}_{2} \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{3}+4 \mathrm{HCl}$
correct products
balanced equation
(d) oxidation product is $\mathrm{H}_{2} \mathrm{SO}_{3}$
reduction product is S
[Total: 12]

4 (a)

H atoms must be shown.
Structure must not contain any CH_{3} groups
(b)

cis

trans
(c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	02

(d)

(1)
(1)
[2]
image relationship in 3D
(e)

e.g. cyclopentane structure
allow methylcyclobutane or dimethylcyclopropane
(1)
(f) e.g.

two repeat units must be shown
relative positions of $-\mathrm{CH}_{3}$ and $-\mathrm{C}_{2} \mathrm{H}_{5}$ may differ from those shown above
(1)

5 (a) (i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}$
allow $\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+}$
(1)
(ii) from orange to
or purple to colourless
green or green/blue
(1)
(b) (i) to ensure complete oxidation of $-\mathrm{CH}_{2} \mathrm{OH}$
or to keep reactants in the reaction flask
(ii) $\mathrm{CH}_{3} \mathrm{CHO} /$ ethanal
(c) (i) CH_{3} I/iodomethane
(ii) nucleophilic substitution or hydrolysis

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	02

(d) step I
red $\mathrm{P}+\mathrm{I}_{2}$ or $\mathrm{HI}(\mathrm{aq})$ or $\mathrm{KBr} /$ conc $\mathrm{H}_{3} \mathrm{PO}_{4}$ or PI_{3}
heat but room temperature for PI_{3}
step II
KCN in aqueous ethanol
in aqueous ethanol, heat under reflux
allow aqueous ethanol in either place
step III
aqueous mineral acid (not nitric acid)
or $\mathrm{NaOH}(\mathrm{aq})$ then aqueous mineral acid
heat
[Total: 12]

