MARK SCHEME for the October/November 2006 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

GCE A/AS LEVEL - OCT/NOV 2006	9701	4
boiling points increase down the group (because of) (1) larger van der Waals/intermolecular attractions <i>or</i> bigger indu		
boiling points increase down the group (because of) (1) larger van der Waals/intermolecular attractions <i>or</i> bigger indu		
larger van der Waals/intermolecular attractions or bigger indu		
J	uced dipoles (1)	
due to more electrons per molecule (1)		
tetrahedral - clear from diagram (1)		
angles = 109 - 110 (1)		
 four bonded pairs + 2 lone pairs around Xe (1) three lone pairs on at least one F atom (1) 		
(ii) square planar (can be read into very clear diagram in (i)) (1)	
angles = 90° (1)		
CCI₄ does not react <i>or</i> SiCI₄ does (<i>or</i> read into an equation) (1)	
due to presence of available/low-lying/d-orbitals on Si (1)		
SiC l_4 + 2H ₂ O \longrightarrow SiO ₂ + 4HC l (or SiC l_4 + 4H ₂ O \longrightarrow Si(OH) ₄ + 4HC l etc: also allow par	tial hydrolysis) (1)	
$PbCl_4 + _8_Na + _4_C_2H_5Cl \longrightarrow Pb(C_2H_5)_4$	+ 8 NaC <i>l</i> (1)	
$Pb(C_2H_5)_4 = 207 + 4x29 = 323 (1)$		
323g needs 8 x 23 = 184g Na		
∴ 1000g needs 1000 x 184/323 = 569 or 570 g ecf from (correct	a equn (1) ans = (2) marks)	
ative method:		
1.0kg of $Pb(C_2H_5)_4$ is 3.096 moles (1)	(0_{α}) (1)	
	larger van der Waals/intermolecular attractions <i>or</i> bigger indi due to more electrons per molecule (1) etrahedral - clear from diagram (1) angles = 109°-110° (1) (i) four bonded pairs + 2 lone pairs around Xe (1) three lone pairs on at least one F atom (1) (ii) square planar (can be read into very clear diagram in (i angles = 90° (1) CCl ₄ does not react <i>or</i> SiCl ₄ does (<i>or</i> read into an equation) (1 due to presence of available/low-lying/d-orbitals on Si (1) SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl (or SiCl ₄ + 4H ₂ O → Si(OH) ₄ + 4HCl etc: also allow par PbCl ₄ + 8 _Na + 4 _C ₂ H ₅ Cl → Pb(C ₂ H ₅) ₄ Pb(C ₂ H ₅) ₄ = 207 + 4x29 = 323 (1) 323g needs 8 x 23 = 184g Na ∴ 1000g needs 1000 x 184/323 = 569 or 570 g ecf from (correct ative method: 1.0kg of Pb(C ₂ H ₅) ₄ is 3.096 moles (1) .:we need 8 x 3.096 = 24.77 moles of Na, which is 569 or 57	larger van der Waals/intermolecular attractions <i>or</i> bigger induced dipoles (1) due to more electrons per molecule (1) etrahedral - clear from diagram (1) angles = 109°-110° (1) (i) four bonded pairs + 2 lone pairs around Xe (1) three lone pairs on at least one F atom (1) (ii) square planar (can be read into very clear diagram in (i)) (1) angles = 90° (1) CCl ₄ does not react <i>or</i> SiCl ₄ does (<i>or</i> read into an equation) (1) due to presence of available/low-lying/d-orbitals on Si (1) SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl (<i>or</i> SiCl ₄ + 4H ₂ O → Si(OH) ₄ + 4HCl etc: also allow partial hydrolysis) (1) PbCl ₄ + 8 _Na + 4 _C ₂ H ₅ Cl → Pb(C ₂ H ₅) ₄ + 8 _NaCl (1) Pb(C ₂ H ₅) ₄ = 207 + 4x29 = 323 (1) 323g needs 8 x 23 = 184g Na ∴ 1000g needs 1000 x 184/323 = 569 or 570 g ecf from equn (1) (correct ans = (2) marks) ative method: 1.0kg of Pb(C ₂ H ₅) ₄ is 3.096 moles (1) .:.we need 8 x 3.096 = 24.77 moles of Na, which is 569 or 570 g) (1)

[Total: 15]

Page 3		Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL - OCT/NOV 2006	9701	4
2 (2)	(i)	[one chiral centre only] (1)		
Z (a)	(')			
	(11)			
	(111)	$M_{\rm r} = 206$ ect (1)		
		mass = 0.15 x (100/1000) x 206 = 3.1 g ecf (1) (correct a	ins = (2) marks)	
	(iv)	$n(NaOH) = 0.1 \times 12/100 = 1.2 \times 10^{-3} \text{ moles} (1)$		
		$n(\mathbf{A}) = 0.6 \times 10^{-3}$, so $M_r = 0.1/(0.6 \times 10^{-3}) = 167$ (a)	allow 166-170) (1) correct ans = (2) ma	rks)
		This fits with $HO_2C-C_6H_4-CO_2H$ (which has $M_r = 166$)	(1)	
(b)	(i)	$(K_a =) [H^+][A^-]/[HA] (1)$		
	(ii)	$[H^{+}] = \sqrt{K_{a.c}} = \sqrt{6.3 \times 10^{-6} \times 0.15} = 9.72 \times 10^{-4} (1)$		
		pH = 3.0 (1)		d
		(6	correct ans = (2) mar	rks)
(c)	(i)	one that resists/control/maintains changes in pH (NC	OT <i>no</i> change in pH) (1)
		when small amounts of acid/ H^+ (or base/OH ⁻) are add	ded. (1)	
	(ii)	$\begin{array}{rcl} HPO_4^{2^-} + & H^+ & \longrightarrow & H_2PO_4^{-}(1) \\ H_2PO_4^{-} + & OH^{-} & \longrightarrow & HPO_4^{2^-} + & H_2O(1) \end{array}$		
	(iii)	$ pH = pK_a + log ([base]/[acid]) \\ = 7.2 + log (.002/.005) = 6.8 (2) \\ (correct ans = (2) marks: deduct (1) for each e.g. if ratio is upside down, hence pH = 7.6, a$	error, answer is worth (1))	

[Total: 16 max 15]

Page 4		Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL - OCT/NOV 2006	9701	4
3 (a)	(i)	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2 (or x \frac{1}{2}) (1)$		
	(ii)	(Down the group the nitrates)		
		become more stable or are more difficult to decompose		
		or need a higher temperature (to decompose) (1)		
		because the radius of cation/Group II ion//M²⁺ increase or charge density of the cation decreases (1)	es	
		thus causing less polarisation/distortion of the anion/N	O ₃ 7/nitrate (1)	[4]
(b)		"molar mass" of mixture = 211.6 + 3 x 12 = 247.6 (1)		
		10 g is thus 10/247.6 = 0.040(4) moles (allow ecf for	0.047(3), from <i>M</i> _r	= 211.6) (1)
		no of moles of gas produced = $0.0404 \times 4 = 0.162 \text{ me}$	oles (ecf: 0.189 m	nol)
		∴volume = $0.1616 \times 24 = 3.88 \text{ or } 3.9 \text{ dm}^3$ (allow equation (correct a	f for 4.54 dm ³) (1) ans = (3) marks)	
(alte	ernative	method: 1 mole/247.6g of mixture will produce 4 x 24 = 96 dm ³ .:10g of mixture will produce 96 x 10/247.6 = 3.88 or	of gas (1) 3.9 dm ³) (1)	[3]
(c)		(CO is poisonous)		
		due to complexing/ligand exchange with (Fe of) haemog (NOT redox involving Fe^{2+}/Fe^{3+})	globin (1)	

stopping O₂ being transported around body/in blood/to tissues/from lungs (1) [2]

[Total: 9 max 8]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2000	6 9701	4
4 (a)	(i) light <i>or</i> heat [aq or A <i>l</i> C <i>l</i> ₃ negates] (1)		
	(ii) NaOH/KOH/alkali/OH ⁻ (1) in alcohol/ethanol + heat [aq negates] (1	1)	
	(iii) [-CH ₂ CH(C ₆ H ₅)-] [C-C not needed, but (C=C is wrong] (1)	
	(iv) CH ₂ =CHCN [C=C is needed here] (1)		
(b)	(i) /OH ⁻ (aq)/NaOH(aq)/aqueous alkali/ + heat	[aq or solution or dil etc. ne	eded] (1)
	(ii) (pale) yellow ppt/crystals (NOT orange or	r orange-yellow) (1)	
	(iii) C/D is $C_6H_5CO_2Na \checkmark$ D/C is $CHI_3 \checkmark$	(1) + (1)	
(c)	(i) C <i>l</i> — CH ₂ CH ₃	3	
		(1)	
	(ii) needs $A_lC_l_3$ or similar [light or aq negat	tes] (1)	
	(iii) (hot) KMnO ₄ (aq) + OH ⁻ or H ⁺ [NOT Cr ₂ O ₇	7 ²⁻] (1)	

(iii) (hot) KMnO₄(aq) + OH⁻ or H⁺ [NOT $Cr_2O_7^{2-}$] (1)

[Total: 12]

[Total: 10]