## MARK SCHEME for the November 2005 question paper

| 9701 CHEMISTRY |         |                     |  |  |  |
|----------------|---------|---------------------|--|--|--|
| 9701/06        | Paper 6 | maximum raw mark 40 |  |  |  |

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

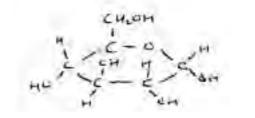
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.




| Page 1 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – November 2005 | 9701     | 6     |

## Biochemistry

2

1 (a) glucose



|     | Nee  | Needs to show ring structure and H or –OH                                                    |            |  |  |  |  |
|-----|------|----------------------------------------------------------------------------------------------|------------|--|--|--|--|
| (b) | (i)  | $C_{12}H_{22}O_{11}$ + $H_2O \rightarrow 2C_6H_{12}O_6$                                      |            |  |  |  |  |
|     | (ii) | Acid + water<br>Boil/reflux                                                                  | [1]<br>[1] |  |  |  |  |
|     |      | Enzymes (allow named enzyme)<br>15-45 °C                                                     | [1]<br>[1] |  |  |  |  |
| (c) |      | and $\beta$ -pyranose (1-4 glucose) forms different optical isomerism at C <sub>1</sub>      | [1]        |  |  |  |  |
|     | Bot  | h <b>C</b> and <b>D</b> are polymers OR polysaccharide                                       | [1]        |  |  |  |  |
|     | C is | s found in starch or glycogen (α-amylose), <b>D</b> is cellulose )                           |            |  |  |  |  |
|     | C is | s used for storage, <b>D</b> has use as a structural polymer ) 4 x ½ and round down          |            |  |  |  |  |
|     |      |                                                                                              | [2]        |  |  |  |  |
| (a) | (i)  | Alkene, carboxyl 2 2                                                                         | < [1]      |  |  |  |  |
|     |      | R-COO-CH <sub>2</sub>                                                                        |            |  |  |  |  |
|     |      | R-COO-CH                                                                                     |            |  |  |  |  |
|     |      | R-COO-CH <sub>2</sub>                                                                        | [1]        |  |  |  |  |
| (b) | (i)  | No. of moles of oleic acid in 1 g = $\frac{3.5 \times 10^{-3}}{3}$ = 1.17 x 10 <sup>-3</sup> | [1]        |  |  |  |  |
|     |      | Hence $M_{\rm r}$ of oleic acid = 855                                                        | [1]        |  |  |  |  |
|     |      | [Calculation from adding atoms = 884]                                                        |            |  |  |  |  |
|     | (ii) | Energy store (allow insulation in cold climates, formation of lipids)                        | [1]        |  |  |  |  |

| Pa  | age 2   |       | Mark Scheme                                                                                                                                                                 |      | Paper          |
|-----|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|
|     |         |       | GCE A LEVEL – November 2005                                                                                                                                                 | 9701 | 6              |
|     | (c)     | (i)   | Two of A, D, E, K                                                                                                                                                           |      | 2 x <b>[1]</b> |
|     |         | (ii)  | One of:                                                                                                                                                                     |      |                |
|     |         |       | A – oily fish, dairy products, carrots/fruit<br>D – oily fish, milk, eggs (sunlight)<br>E – green vegetables, vegetable oils<br>K – brassicas, wholegrain cereals, egg yolk |      | [1]            |
|     |         |       |                                                                                                                                                                             |      | [,]            |
|     |         |       | One of:                                                                                                                                                                     |      |                |
|     |         |       | A – night blindness, dry eyes<br>D – rickets, poor bone formation<br>E – abnormal cellular membranes                                                                        |      |                |
|     |         |       | K – prolonged coagulation time in newborn infants                                                                                                                           |      | [1]            |
| Env | vironmo | ental | Chemistry                                                                                                                                                                   |      |                |
| 3   | (a)     | (i)   | Silicon/oxygen sheets are composed of tetrahedral Aluminium/oxygen sheets are composed of octahed                                                                           | dral | [1]<br>[1]     |
|     |         | (ii)  |                                                                                                                                                                             |      |                |
|     |         | (11)  | <>SiO <sub>4</sub> layer>                                                                                                                                                   |      |                |
|     |         |       | <>A <i>l</i> O <sub>6</sub> layer>                                                                                                                                          |      |                |
|     |         |       | <>SiO <sub>4</sub> layer>                                                                                                                                                   |      | [1]            |
|     |         |       |                                                                                                                                                                             |      |                |
|     |         | (iii) | Any <b>two</b> points :<br>• Normal 2:1 clays have hydrogen bonds betw                                                                                                      | •    |                |
|     |         |       | <ul> <li>On drying, hydrogen bonds between layers</li> <li>This causes contraction and cracking, since</li> </ul>                                                           |      |                |
|     |         |       |                                                                                                                                                                             | ,    | [2 x [1]]      |
|     | (b)     | Clay  | s have a negative charge on their surface                                                                                                                                   |      | [1]            |
|     |         | This  | is due to substitution of Si by A <i>l</i> (or A <i>l</i> by Mg)                                                                                                            |      | [1]            |
|     |         |       | ts may take $K^{\star}$ ions out of solution, these are replace exchange from the clay/clays act as a reservoir of cat                                                      | -    | [1]            |
|     | (c)     | Catio | on exchange could replace $H^+$ ions with $Cs^+$ ions                                                                                                                       |      | [1]            |
|     |         | Laro  | e Cs⁺ ions not easily displaced                                                                                                                                             |      | [1]            |
|     |         |       |                                                                                                                                                                             |      |                |

|          | age 3                 |                                        | Mark Scheme                                                                                                                                                                                                                                                                                                                          | Syllabus       | Paper                |
|----------|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|
|          |                       |                                        | GCE A LEVEL – November 2005                                                                                                                                                                                                                                                                                                          | 9701           | 6                    |
| 4        | (a)                   | char<br>Oxy                            | bsorb in the infra-red region of the spectrum a molecu<br>Iging dipole<br>gen and nitrogen are symmetrical whereas methane a<br>de possess changing dipoles                                                                                                                                                                          |                | [1                   |
|          | (b)                   | Cem                                    | ent manufacture                                                                                                                                                                                                                                                                                                                      |                | [1                   |
|          |                       | CaC                                    | $O_3 \rightarrow CaO + CO_2$                                                                                                                                                                                                                                                                                                         |                | [1                   |
|          | (c)                   | (i)                                    | Carbon dioxide dissolves in cold oceans                                                                                                                                                                                                                                                                                              |                | [1                   |
|          |                       |                                        | It establishes equilibria forming $HCO_3^-$ and $CO_3^{2-}$ ior (or equations)                                                                                                                                                                                                                                                       | IS             | [1                   |
|          |                       |                                        | Some $CO_2$ is taken up by phytoplankton and enters                                                                                                                                                                                                                                                                                  | the food chain | [1                   |
|          |                       |                                        | Some $CO_3^{2-}$ ions react with $Ca^{2+}$ ions to from insolu                                                                                                                                                                                                                                                                       | ble $CaCO_3$   | [1                   |
|          |                       | (ii)                                   | Oceans 'store heat' helping maintain global tempera                                                                                                                                                                                                                                                                                  | atures         | [1                   |
|          |                       |                                        | Oceans affect weather patterns, particularly wind an                                                                                                                                                                                                                                                                                 | nd rainfall    | [1                   |
|          | Transfers energy from |                                        | Transfers energy from one region to another via the                                                                                                                                                                                                                                                                                  | Water Cycle    | [1                   |
|          |                       |                                        |                                                                                                                                                                                                                                                                                                                                      |                | [Max 6               |
|          |                       |                                        |                                                                                                                                                                                                                                                                                                                                      |                |                      |
| Pha      | ase Eq                | uilibri                                | a                                                                                                                                                                                                                                                                                                                                    |                |                      |
|          | ase Eq<br>(a)         | Allov<br>liquio                        | <b>a</b><br>v : column containing stationary phase<br>d under high pressure (mobile phase)<br>ctor/recorder                                                                                                                                                                                                                          |                | [1                   |
| Pha<br>5 | -                     | Allov<br>liquio                        | v : column containing stationary phase<br>d under high pressure (mobile phase)                                                                                                                                                                                                                                                       |                | [1<br>[1<br>[1       |
|          | (a)                   | Allov<br>liquio<br>dete                | v : column containing stationary phase<br>d under high pressure (mobile phase)<br>ctor/recorder                                                                                                                                                                                                                                      | ase            | [1<br>[1             |
|          | (a)                   | Allov<br>liquid<br>dete<br>(i)         | v : column containing stationary phase<br>d under high pressure (mobile phase)<br>ctor/recorder<br>It is in order of the components leaving the column<br>The strength of bonds formed with the stationary ph                                                                                                                        | ase            | [1<br>[1<br>[1<br>[1 |
|          | (a)                   | Allov<br>liquid<br>dete<br>(i)<br>(ii) | v : column containing stationary phase<br>d under high pressure (mobile phase)<br>ctor/recorder<br>It is in order of the components leaving the column<br>The strength of bonds formed with the stationary ph<br>The $M_r$ of the component<br>Area under peak <b>A</b> = 6 x 40/2 = 120<br>Area under peak <b>B</b> = 6 x 10/2 = 30 |                | [1<br>[1<br>[1<br>[1 |

|           | je 4         |                                                                 | Mark Scheme<br>GCE A LEVEL – November 2005                                                                                                                                                                                                                                                                                                                                                              | Syllabus<br>9701                                      | Paper<br>6 |
|-----------|--------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|
| 6         | (a)          | <b>I</b>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |            |
|           |              |                                                                 | Lead Liquid Liquid Liquid transl                                                                                                                                                                                                                                                                                                                                                                        | mr ab<br>th                                           |            |
|           |              |                                                                 | a Mentron 10                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |            |
|           |              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         | Axes (1)<br>m.p.'s (1)<br>eutectic (1)<br>3 areas (1) |            |
|           |              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |            |
|           |              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | l          |
|           | (b)          | (i)                                                             | Alloy has a lower m.p.<br>Plumber's solder solidifies over a range<br>Electrician's solder has a sharp m.p. (f.p.)<br>Alloy is stronger than metals<br>Melting point can be varied by changing<br>composition                                                                                                                                                                                           | Any 3 points                                          |            |
|           | (b)          | (i)<br>(ii)                                                     | <ul> <li>Plumber's solder solidifies over a range</li> <li>Electrician's solder has a sharp m.p. (f.p.)</li> <li>Alloy is stronger than metals</li> <li>Melting point can be varied by changing composition</li> <li>Hardness/durability/resistance to wear</li> <li>Colour can be varied by composition</li> <li>Resistance to corrosion</li> </ul>                                                    |                                                       | I          |
|           | (b)          |                                                                 | <ul> <li>Plumber's solder solidifies over a range</li> <li>Electrician's solder has a sharp m.p. (f.p.)</li> <li>Alloy is stronger than metals</li> <li>Melting point can be varied by changing composition</li> <li>Hardness/durability/resistance to wear</li> <li>Colour can be varied by composition</li> </ul>                                                                                     | Any 3 points<br>Any 3 points                          |            |
| Spec      |              | (ii)                                                            | <ul> <li>Plumber's solder solidifies over a range</li> <li>Electrician's solder has a sharp m.p. (f.p.)</li> <li>Alloy is stronger than metals</li> <li>Melting point can be varied by changing composition</li> <li>Hardness/durability/resistance to wear</li> <li>Colour can be varied by composition</li> <li>Resistance to corrosion</li> </ul>                                                    |                                                       |            |
| Spec<br>7 |              | (ii)<br>;opy<br>(i)<br>(ii)                                     | <ul> <li>Plumber's solder solidifies over a range</li> <li>Electrician's solder has a sharp m.p. (f.p.)</li> <li>Alloy is stronger than metals</li> <li>Melting point can be varied by changing composition</li> <li>Hardness/durability/resistance to wear</li> <li>Colour can be varied by composition</li> <li>Resistance to corrosion</li> </ul>                                                    |                                                       |            |
| -         | trosc        | (ii)<br>:opy<br>(i)<br>(ii)<br>(iii)                            | <ul> <li>Plumber's solder solidifies over a range<br/>Electrician's solder has a sharp m.p. (f.p.)<br/>Alloy is stronger than metals<br/>Melting point can be varied by changing<br/>composition</li> <li>Hardness/durability/resistance to wear<br/>Colour can be varied by composition<br/>Resistance to corrosion<br/>Difficult to forge</li> <li><sup>13</sup>C</li> <li><sup>81</sup>Br</li> </ul> |                                                       | 3 x ['     |
| -         | trosc<br>(a) | (ii)<br>copy<br>(i)<br>(ii)<br>(iii)<br>M+2<br><sup>79</sup> Br | Plumber's solder solidifies over a range<br>Electrician's solder has a sharp m.p. (f.p.)<br>Alloy is stronger than metals<br>Melting point can be varied by changing<br>composition<br>Hardness/durability/resistance to wear<br>Colour can be varied by composition<br>Resistance to corrosion<br>Difficult to forge                                                                                   | Any 3 points                                          | 3 x [^     |

| Page 5 |         |                  | Mark Scheme                                                                                                              | Syllabus           | Paper    |
|--------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
|        |         |                  | GCE A LEVEL – November 2005                                                                                              | 9701               | 6        |
|        |         | (ii)             | fragmentation pattern                                                                                                    |                    | [1]      |
|        |         |                  | Look for a fragment with a mass two units more the corresponding unlabelled fragment.                                    | an the             | [1       |
|        |         |                  | If it is at <i>m</i> /e 59 then structure <b>K</b> is correct (or if at structure <b>L</b> )                             | m/e 33,            | [1       |
| 8      | (a)     |                  | ending (1) and stretching (1) frequencies of bonds in this region of the spectrum                                        | the molecule are   | [2       |
|        | (b)     |                  | hough plastics contain mainly carbon and hydrogen,<br>ntain different (functional) groups                                | different plastics | [1       |
|        |         | Во               | onds in the groups absorb in different regions of the spectrum                                                           |                    | [1       |
|        | (c)     | Ρ-               | – 700 cm <sup>-1</sup> caused by C-C $l$ ; plastic is pvc                                                                |                    | [2 x 1   |
|        |         | Q                | – 3300 cm <sup>-1</sup> caused by N-H ; plastic is nylon/polyami                                                         | de                 | [2 x 1   |
|        |         | <b>R</b> -<br>Of | – 1750 cm <sup>-1</sup> caused by C=O ; plastic is <i>Terylene</i> /poly<br>R 1150 cm <sup>-1</sup>                      | vester             | [2 x 1   |
| Trar   | nsition | Eler             | nents                                                                                                                    |                    |          |
| 9      | (a)     | (i)              | impure nickel heated with CO at 50 °C/low temp<br>Ni(s) + $4CO(g) \Rightarrow Ni(CO)_4(I)$                               |                    | [1       |
|        |         |                  | then the carbonyl is decomposed by heating to >20 $Ni(CO)_4(I) \Rightarrow Ni(s) + 4CO(g)$ (both equation                |                    | [1<br>[1 |
|        |         |                  | The CO is recycled.                                                                                                      |                    | [1       |
|        |         | (ii)             | anode: Ni(s) - $2e^{-} \longrightarrow Ni^{2+}(aq)$<br>cathode: Ni <sup>2+</sup> (aq) + $2e^{-} \longrightarrow Ni(s)$ ( | both)              | [1       |
|        |         |                  | copper too unreactive to dissolve at anode OR $Cu^{2+}/Cu = 0.34V$ whereas $Ni^{2+}/Ni = -0.25V$                         |                    | [1       |
|        |         |                  | so the copper falls to the bottom as "anode sludge"                                                                      | 99                 | [1       |
|        |         |                  | so the copper falls to the bottom as "anode sludge"                                                                      | 33                 | Ι        |
|        |         |                  |                                                                                                                          |                    |          |

| Pa | ge 6 | Mark Scheme                                                                                                                                                                                                  | Syllabus | Paper     |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
|    |      | GCE A LEVEL – November 2005                                                                                                                                                                                  | 9701     | 6         |
|    | (b)  | $[Ni(H_2O)_2(NH_3)_4]^{2+}$ is octahedral: cis-trans isomers                                                                                                                                                 |          | [1]       |
|    |      | diagrams of the two isomers                                                                                                                                                                                  |          | [1]       |
|    |      | $[Ni(CN)_2(R_3P)_2]$ must be tetrahedral [i.e. NOT square plates only one isomer                                                                                                                             | anar]    | [1]       |
| 10 | (a)  | Paramagnetism is due to the presence of unpaired elec                                                                                                                                                        | trons.   | [1]       |
|    |      | Fe <sup>2+</sup> is d <sup>6</sup> , hence 4 unpaired electrons (assume high spi<br>Fe <sup>3+</sup> is d <sup>5</sup> , hence 5 unpaired electrons (assume high spi                                         | n)<br>n) | [1]       |
|    |      | Hence Fe <sup>3+</sup> is the more paramagnetic                                                                                                                                                              |          | [1]       |
|    | (b)  | Add SCN⁻(aq)                                                                                                                                                                                                 |          | [1]       |
|    |      | If Fe <sup>3+</sup> present, a blood red colouration                                                                                                                                                         |          | [1]       |
|    |      | Add [Fe(CN) <sub>6</sub> ] <sup>3-</sup> (aq)                                                                                                                                                                |          | [1]       |
|    |      | If Fe <sup>2+</sup> present, a deep blue colour/ppte                                                                                                                                                         |          | [1]       |
|    | (c)  | (i) $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$                                                                                                                                                    |          | [1]       |
|    | -    | (ii) Fe <sup>3+</sup> is a homogeneous catalyst                                                                                                                                                              |          | [1]       |
|    |      | $E^{\circ}$ of +0.77V is lower than that for $S_2O_8^{2-}/SO_4^{2-}$ but higher than that for $I_2/I^-$                                                                                                      |          | [1]       |
|    |      | $\begin{array}{rcl} 2I^{-} &+& 2Fe^{3^{+}} &\longrightarrow & I_{2} &+& 2Fe^{2^{+}} \\ S_{2}O_{8}^{2^{-}} &+& 2Fe^{2^{+}} &\longrightarrow & 2SO_{4}^{2^{-}} &+& 2Fe^{3^{+}} \end{array} (both) \end{array}$ |          | [1]       |
|    |      |                                                                                                                                                                                                              |          | [4 max 3] |
|    |      |                                                                                                                                                                                                              |          |           |