## MARK SCHEME for the November 2005 question paper

## 9701 CHEMISTRY

maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.
The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 1 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - November 2005 | 9701 | 2 |

1 (a) Energy required to remove one electron from each atom
in one mole of
gaseous atoms of an element
('Energy change when one mole of gaseous atoms loses one mole of electrons' would score all three marks.)
(b) $\quad X^{+}(g) \rightarrow X^{2+}(g)+e^{-} \quad$ equation
state symbols
(1) [2]
(c) Group 5
sharp rise in successive ionisation energies between $5^{\text {th }}$ and $6^{\text {th }}$ IEs
indicating change to a different shell/energy level or outer shell contains 5 electrons
(1)
(d) down the Group
atomic radii increase/
outer electrons are increasingly further away
electrons are added to new shells/more shells
more shielding
despite increase in nuclear charge
(1) [4]
[Total: 12]
2 (a)
sulphur atom has 6 /carbon atom has 4 electrons
$S=C$ double bonds (4 electrons) clearly shown
(b) linear
(c) the enthalpy change when 1 mol of a compound
is formed from its elements in their standard states
under standard conditions (may be quoted)
(1)
(d) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
-395
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$ $-298$
$\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}-1110$
$\mathrm{C}+2 \mathrm{~S} \rightarrow \mathrm{CS}_{2} \quad \Delta H=-395+2(-298)-(-1110)$
$=+119 \mathrm{~kJ} \mathrm{~mol}^{-1}$
cycle (1) use of 2 for $\mathrm{S} / \mathrm{SO}_{2}$ (1) answer
(1) [3]
(e) $\mathrm{CO}_{2}$
$\mathrm{N}_{2}$
$\mathrm{CS}_{2}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+2 \mathrm{~S}+\mathrm{N}_{2}$
completely correct equation gets (3)
consequential errors to be decided at co-ordination
(a) (i) $\mathrm{N} \equiv \mathrm{N}$ bond is very strong
large amount of energy required to break it or $E_{a}$ is very high
(ii) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

$$
\begin{align*}
& \text { or } \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \\
& \text { or } 3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2} \text { (may be others) } \tag{1}
\end{align*}
$$

$\mathrm{N}_{2} / \mathrm{H}_{2}$ high pressure, high temperature, catalyst
$\mathrm{N}_{2} / \mathrm{O}_{2}$ high pressure, high temperature, lightning
$\mathrm{Mg} / \mathrm{N}_{2}$ high temperature, burning Mg
any 2 conditions which correspond to the eqn given

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - November 2005 | 9701 | 2 |

(iii) $E_{a}$ overcome/ high energy input/

$$
E_{\mathrm{a}} \text { lowered by catalyst }
$$

(1) [6]
(b) (i) fertiliser or explosive
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in rivers causes excessive growth of aquatic plants/algae
when plants/algae die $\mathrm{O}_{2}$ is used up
fish/aquatic life die
'eutrophication' for 2 marks
(c) (i) $\mathrm{NH}_{3}$
(ii) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})+\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{NaNO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
equation (1) state symbols (1)
(d) reacts with ammonia

4 (a) a compound which contains the $-\mathrm{CH}_{2} \mathrm{OH}$ group
(1) [1]
(b)

| given in qu. |  |  |  |
| :---: | :---: | :---: | :---: |
| primary | secondary | tertiary | primary |
| butan-1-ol | isomer 2 | isomer 3 | isomer 4 |

each correct structure
each correct label
(c) (i) from orange
to green
(ii) correct primary alcohol
(1) [3]
[Total: 10]

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - November 2005 | 9701 | 2 |

5
(a) $\mathrm{C}=\mathrm{C}$
(1) [1]
(b) alcohol
(ignore any reference to primary or secondary)
[1]
(c) aldehyde
(1) [1]
(d)

fully correct structure is worth 2
$\mathrm{CH}_{2}=$ present in wrong structure gets (1)
(e) RONa or $\mathrm{R}^{+} \mathrm{ONa}^{-}$
$\mathrm{RO}_{2} \mathrm{CCH}_{3}$
(1) [2]
(f) $\quad \mathrm{RCO}_{2} \mathrm{H}$
$\mathrm{RCH}=\mathrm{NNHC}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}$ as the minimum
(1) [2]
(g)

correct acid
correctly shown as cis
(1) [2]
[Total: 11]

