MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

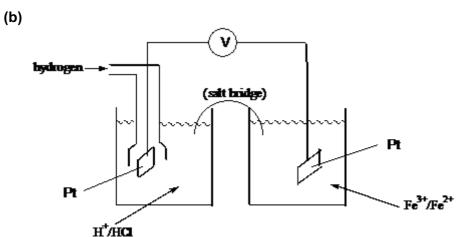
9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.


Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

(a) The potential of an electrode compared to that of a standard hydrogen electrode (SHE) or the EMF of a cell composed of the test electrode and the SHE
 [1]

all measurement concentrations of 1 mol dm⁻³ and 298 K/1 atm pressure [1]

 H_2 and good delivery system [1] Fe^{2+}/Fe^{3+} solution labelled [1] platinum electrodes (both) [1] salt bridge and voltmeter [1] H^+ or HCl or H₂SO₄ [1] (acid is not sufficient) [5]

(c) (i)
$$E^{\ominus} = 0.77 - 0.54 = 0.23$$
 (V) [1]

(ii) Since E^{\ominus} is positive/ $E^{\ominus} > 0$

So more products / the equilibrium will be over to the right / forward reaction is favoured ecf from (c)(i) [1]

(iii) $K_c = [Fe^{2+}]^2 [I_2] / [Fe^{3+}]^2 [I^-]^2$ [1]

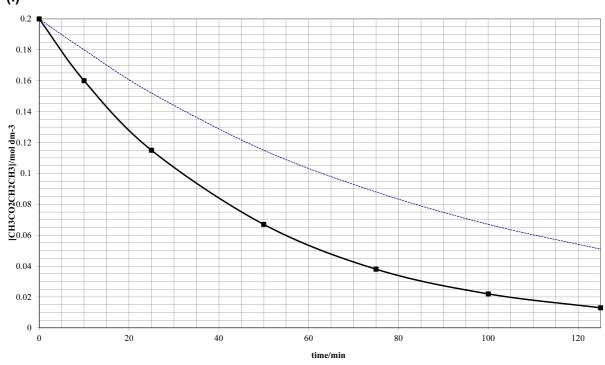
units are **mol⁻¹ dm**³ ecf on expression

(iv) ([Fe²⁺] must always be twice [I₂], so) [Fe²⁺] = 0.02 (mol dm⁻³) [1]

([I⁻] must always be equal to [Fe³⁺], so) [I⁻] = 2×10^{-4} (mol dm⁻³) [1]

(v) $K_c = \{(0.02)^2 \times 0.01\} / \{(2 \times 10^{-4})^2 \times (2 \times 10^{-4})^2\}$ correct expression [1] (allow ecf from incorrect expression in (c)(iii)) (allow ecf from (c)(iv)) = $(4 \times 10^{-6}) / (1.6 \times 10^{-1.5}) = 2.5 \times 10^9 (\text{mol}^{-1} \text{ dm}^3)$ [1]

[8]


[1]

[2]

[Total: 15]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

plotting of points (-1 for any error - plotted to within 1/2 square) [1] a good best fit curve [1]

(ii) construction lines for two half-lives and $t_{\frac{1}{2}} \approx 63$ m or 32 m (±3 min) / $t_{\frac{1}{2}}$ is constant or construction lines for two tangents and mention of two values / concentration doubled, [1] rate doubled (iii) either ratio of (initial) rates (slopes) or ratio of $t_{\frac{1}{2}}$ = 2.0 [1]

so reaction is first order w.r.t. [HC1]

because HCl is a catalyst

(ii)

(iv) rate = k[CH₃CO₂CH₂CH₃][HC*l*] conditional on (a)(iii) and ecf from (a)(iii) [1]

(initial) rate = 0.2/95 or 0.2/47	
≈ 2.1×10^{-3} or 4.3×10^{-3} (mol dm ⁻³ min ⁻¹)	[1]

$$k = 2.1 \times 10^{-3} / (0.2 \times 0.1) \text{ or } 4.3 \times 10^{-3} / (0.2 \times 0.2)$$

$$\approx 0.11 \text{ (mol}^{-1} \text{ dm}^3 \text{ min}^{-1})$$
[1]

[8 max 7]

- (b) (i) because H₂O is the solvent or its concentration cannot change [1]
 - [1] [2]

[1]

[Total: 9]

	Page 4		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2013	9701	41
3	(a) (i)	dens	ity = mass per unit volume		[1]
	(ii)	-	s per atom <i>or A</i> _r is larger (for Fe)		
		<i>Or</i> Fe 5	5.8 and Ca 40.1		[1]
			adii/volume of atom/ion is smaller		
		or R _{Fe} =	= 0.116 nm whereas R _{Ca} = 0.197 nm		[1] [3]

(b)

reaction	acid- base	ligand exchange	precipitation	redox
$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+} + 6H_2O$		\checkmark		
$[Cu(H_2O)_6]^{2+}$ + $4HCl \rightarrow [CuCl_4]^{2-}$ + $4H^+$ + $6H_2O$		\checkmark		
$2FeC\mathit{l}_2 + C\mathit{l}_2 \rightarrow 2FeC\mathit{l}_3$				\checkmark
$[Fe(H_2O)_6]^{2+} + 2OH^- \rightarrow Fe(OH)_2 + 6H_2O$	~		\checkmark	
$2Fe(OH)_2 + \frac{1}{2}O_2 + H_2O \rightarrow 2Fe(OH)_3$				\checkmark
$CrO_3 + 2HCl \rightarrow CrO_2Cl_2 + H_2O$	~	\checkmark		
$\begin{array}{c} Cr(H_2O)_3(OH)_3 + OH^- \to [Cr(H_2O)_2(OH)_4]^- + \\ H_2O \end{array}$	\checkmark	\checkmark		
$[Cr(OH)_4]^- + 1\frac{1}{2}H_2O_2 + OH^- \rightarrow CrO_4^{2-} + 4H_2O$		\checkmark		\checkmark

(Where more than one tick appears on a line in the table above – these are alternatives – but allow the mark if both are given).

[8]

(c)	n(H ₂) = 8/24 = 0.33 mol	[1]
	from equation, this is produced from 0.22 mol of A1 ecf (\times 2/3)	[1]

from equation, this is produce	d from 0.22 mol of A <i>l</i> ect (\times 2/3)	[1]

$A_r(Al) = 27$ thus mass of $Al = 27 \times 0.22 = 5.9 - 6$ g hence 5.9–6.0% ecf (× 27)	[1]
	[3]

[[]Total: 14]

Page 5	5	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2013	9701	41
4 (a) (du	e to tl	ne) strong N≡N bond		[1] [1]
(b) (i)	e.g.	balanced equation forming a stable nitrogen oxide $N_2 + O_2 \longrightarrow 2NO$		
	or N ₂ +	$2O_2 \longrightarrow 2NO_2$		[1]
(ii)	in lig	htning		[1]
	in ar	engine/combustion of fuels (or a specific example)		[1]
(iii)	(NO ₃	, produces) acid rain <i>or</i> forms (photochemical) smog		[1] [4]
(c) (ba	se is a	a) proton acceptor		[1]
bas	sicities	: ethylamine > NH_3 > phenylamine		[1]
eth	ylamiı	ne (more basic) due to electron donating ethyl group		[1]
phe	enylar	nine (less basic) due to lone pair being delocalised int	o the ring	[1] [4]
(d) (i)	step	1: nucleophilic substitution		[1]
	step	2: hydrolysis		[1]
(ii)	step	1: KCN (in ethanol) and reflux		[1]
	step	2: H_3O^+ / aqueous acid and reflux		[1]
(iii)	T is	\sim NH_2		
	Ľ			[1]
	W is	, ⊂ CI		
	Í			
		0		[1]
				[6]
				[Total: 15]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

5 (a)

	H ₂ O	OH OH	CO ₂ H	OH
Na	H ₂	H ₂	H ₂	H ₂
KOH(aq)	х	x	x	x
Na ₂ CO ₃ (aq)	х	x	CO ₂	x

[5]

(b) (i)	(CH ₃) ₃ C–C <i>l</i> (any unambiguous structure <i>or</i> name)	[1]
(ii)	reduction or hydrogenation	[1]
(iii)	<i>either</i> CH ₃ CO ₂ H and heat with (conc) H ₂ SO ₄ or CH ₃ COC <i>l</i>	[1]
(iv)	reflux	[1]
	dilute HC1	[1] [5]

Page 7 Mark Scheme		Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

(c) (i)

reagent and conditions	product with A	product with B
Br₂(aq)	Br C(CH ₃) ₃	no reaction
heat with HBr	no reaction	Br C(CH ₃) ₃
pass vapour over heated A <i>l</i> ₂ O ₃	no reaction	C(CH ₃) ₃
heat with acidified K ₂ Cr ₂ O ₇	no reaction	C(CH ₃) ₃

[6]

 (ii) either: Cr₂O₇²⁻/H⁺: no observation with A and goes from orange to green with B. or: Br₂(aq): white ppt. with A and no observation/ppt with B

[1] **[7]**

[Total: 17]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

6 (a)

substance	protein synthesis	formation of DNA
adenine		\checkmark
alanine	\checkmark	
aspartate	\checkmark	
phosphate		✓

[3] [3]
[1]

(b) protei	(b) protein : hydrogen bonds			
	between –NH and C=O groups on different (peptide) groups	[1]		
DNA :	hydrogen bonds	[1]		
	between bases / A & T / C & G on different chains	[1] [4]		

(c) primary: covalent bonds between (successive) amino acids

tertiary :

hydrogen bonds	between –COOH / –OH and –NH $_2$ (in side chains)
ionic bonds	between $-NH_3^+$ and $-CO_2^-$ (in side chains)
disulfide bonds	between cysteine molecules / residues / –SH groups (in side chains)
van der Waals/VDW forces	between alkyl groups / non-polar residues (in side chains)

any two rows

[2] **[3]**

[1]

[Total: 10]

Page 9 Mark Scheme		Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	41

7 (a) Any four from:

- extract DNA
- use restriction enzymes (to break DNA into fragments)
- use polymerase chain reaction (to increase concentration of fragments)
- place samples on (agarose) gel
- carry out electrophoresis
- label fragments (transferred to a membrane) with radioactive isotope

[4 × 1] **[4]**

(b)

item for testing	suitable for DNA fingerprinting
human hair	\checkmark
piece of a flint tool	×
piece of Iron Age pot	×
piece of Roman leather	\checkmark

	[3] [3]
	[1]

(c)	(c) insecticides: gas-liquid or thin-layer chromatography				
	dyes	: paper <i>or</i> thin-layer chromatography	[1]		
	drugs:	gas-liquid <i>or</i> thin-layer chromatography	[1] [3]		

[Total: 10]

© Cambridge International Examinations 2013

	Page 10		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2013	9701	41
8	(a) (i)		$\begin{array}{ccc} CO_2H & CO_2H \\ I & I \\ -CH - CH_2 - CH - CH_2 - $		[1]
	(ii)	Addi	ition		[1]
	(iii)	Hydi	rogen bonding		[1] [3]
	(b) (i)	more	e / increase water absorbing properties (allow attracts	water more)	[1]
		more	e polar(ity)/more hydrophilic / has ionic side-chains (as	well as hydrophi	lic ones) [1]
	(ii)	lt sh	ould be biodegradable/decompose		[1] [3]
	(c) idea	a of ic	on exchange / replacement of Na ⁺ for Cd ²⁺ /Pb ²⁺		[1]
	(the	e meta	al ions) will be attracted to the carboxylate ions		[1] [2]
	(d) (i)	cond	densation		[1]
	(ii)		alcohol groups ighly soluble / able to form hydrogen bonds		[1] [2]
					[Total: 10]