CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9701	21
1 (a) (i)	NaC	$OH + HCl \rightarrow NaCl + H_2O$		(1)
	(NH	$_4)_2$ SO ₄ + 2NaOH \rightarrow 2NH ₃ + Na ₂ SO ₄ + 2H ₂ O		(1)
	allov	v ionic equations in each case		
(ii)	n(Na	$aOH) = n(HCl) = \frac{39.2 \times 2.00}{1000} = 0.0784$		(1)
(iii)	n(Na	$aOH) = n(HCl) = \frac{29.5 \times 2.00}{1000} = 0.059$		(1)
(iv)	n(Na	aOH) = 0.0784 - 0.059 = 0.0194		(1)
(v)	<i>n</i> [(N	$H_4)_2 SO_4] = \frac{0.0194}{2} = 9.7 \times 10^{-3}$		(1)
(vi)	mas	s of $(NH_4)_2SO_4 = 9.7 \times 10^{-3} \times 132.1 = 1.2814 g$		(1)
(vii)	% o	$f(NH_4)_2SO_4 = \frac{1.2814 \times 100}{2.96} = 43.30405405 = 43.3$		
	give give	one mark for the correct expression one mark for answer given as 43.3 – i.e. to 3 sig. fig. v ecf where appropriate		(1) (1)
` '		in the river causes e growth of aquatic plants/algae or algal bloom		(1)
wh	nen pla	ants and algae die O_2 is used up \mathbf{or} fish or aquatic life di	е	(1)

(c) manufacture of HNO₃ or explosives or nylon or as a cleaning agent or as a refrigerant

not detergent

(1) [1]

[Total:12]

Page 3		3		Mark Sc			Syllabus	Paper		
				GCE AS/	A LEVEL -	– May/Ju	ne 2013	9701	21	
2	(a)	K_{P}	$=\frac{p(\mathbf{N})}{p(\mathbf{N})}$	$(NO)^4 p (H_2O)^6$ $(NH_3)^4 p (O_2)^5$					(1)	
				eres or Pa or kPa					(1)	
		allo	w ecf	on incorrect powe	rs					[2]
	(b)	(i)	yield	easing temperatu I of NO is decrease ard reaction is exo	ed or react	ion move	s to LHS		(1) (1)	
		(ii)		reasing the press						
				I of NO is increased e moles/molecules			to RHS		(1)	
				er moles/molecules					(1)	[4]
	(c)	let		or NO be y kJ mol ⁻⁷ H ₃ (g) + 5O ₂ (g)		4NO(g)	+ 6H ₂ O(g)			
		ΔΗ	^ө 4 х	(-46.0)		4 <i>y</i>	6 × (–242)		(1)	
		ΔΗ	e reaction	$= 4y + [6 \times (-2)]$ = 4y - 1452 +		(-46.0)]			(1)	
		4 <i>y</i>	= -90	$_{0}$ is -906 kJmol^{-1} so $6 + 1452 - 184 = 3$ $y = \Delta H_{f}^{0}$ for $NO = +$	862	√ ⁻¹			(1)	
				$y - \Delta H_f$ for NO – $+$	ao.o ka iiik	וע			(1)	[4]

[Total: 10]

Page 4	Page 4 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013		21

3 (a) penalise (-1) for names of elements

(i) Na or K or Li (1)

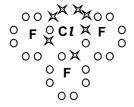
(ii) S or C or N or P (1)

(iii) K (1)

(iv) C (1)

 $(v) \quad Cl \tag{1}$

(vi) Al or Si (1) [6]


(b) (i) Al_2O_3 or SiO_2

(ii) Na_2O (1)

(iii) P_2O_3 or P_4O_6 and P_2O_5 or P_4O_{10} or SO_2 and SO_3 (1+1)

(iv) Al_2O_3 (1) [5]

(c) (i)

3 bonding pairs and

2 lone pairs around Cl atom (1)

3 lone pairs on **each** of the F atoms (1)

(ii) either

referring to van der Waals' forces in BrF₃

van der Waals' or

intermolecular forces are greater/stronger (1)

because there are more electrons in BrF_3 than in ClF_3 (1)

OR referring to permanent dipoles

permanent dipole **or** intermolecular forces are stronger/greater in BrF_3 (1) because BrF_3 has a larger permanent dipole than CtF_3

OR because difference in electronegativity is larger between Br and F than between C*l* and F

between Cl and F (1)

part (ii) has a maximum of 2 marks (max 2) [4]

[Total: 15]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	21

4 Types of reaction used must come from the list in the question.

organic reaction	type of reaction		reagent(s)	
$CH_3CH_2CH_2CH_2Br \rightarrow$	nucleophilic	(1)	NH ₃	(1)
CH ₃ CH ₂ CH ₂ CH ₂ NH ₂	substitution	(1)		
CH ₃ CH ₂ CH ₂ CH ₂ OH→	free radical	(1)	Br ₂	
BrCH ₂ CH ₂ CH ₂ CH ₂ OH	substitution	(1)	or Br ₂ in an organic solvent	(1)
			not Br ₂ (aq)	
CH₃COCH₃ →	nucleophilic	(1)	HCN	
CH ₃ C(OH)(CN)CH ₃	addition	(1)	or HCN and CN ⁻	
			or NaCN/KCN + H ⁺	(1)
CH ₃ CH(OH)CH ₂ CH ₃	elimination	(1)	conc. H ₂ SO ₄	
→ CH ₃ CH=CHCH ₃	not dehydration		or P_4O_{10} or Al_2O_3 or H_3PO_4	(1)

[Total: 11]

Page 6	Page 6 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013	9701	21

5 (a)

reaction	reagent	product
А	Br ₂ in an inert organic solvent	CH₃CHBrCHO
В	PCl ₃	NO REACTION
С	H ₂ and Ni catalyst	CH₃CH₂CH₂CH2OH
D	NaBH ₄	CH₃CH=CHCH₂OH
E	K ₂ Cr ₂ O ₇ /H ⁺	CH₃CH=CHCO₂H

one mark for each correct answer

[5]

(1)

trans or E

cis or Z

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	21

(c) (1) [1]
(d) (i) CH₃CH(OH)CH(OH)CO₂H (1) (1) (1) HO₂CCO₂H (1) [3]

allow ecf on candidate's answer to E in (a)

[Total: 12]