MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2012	9701	42
(a) (i)				[1] [1]
(ii)	Mg ²⁺	$f(g)$ + aq (or H ₂ O) $\rightarrow Mg^{2+}(aq) \text{ or } [Mg(H_2O)_6]^{2+}$		[1]
(iii)	Mg ²⁺	has a smaller radius/size or greater charge density th	an Ca ²⁺ (ions re	equired) [1]
(iv)	0 ²⁻ I	reacts with water to give OH^- or equation: $O^{2-} + H_2O$	→ 20H ⁻	[1] [5]
	(a) (i) (ii) (iii)	(a) (i) enth in th (ii) Mg ²¹ (iii) Mg ²¹	 GCE A LEVEL – May/June 2012 (a) (i) enthalpy/energy change/released when <u>1 mol</u> of <u>ions</u> in the <u>gas phase</u> (are dissolved in) <u>water</u> (ii) Mg²⁺(g) + aq (or H₂O) → Mg²⁺(aq) or [Mg(H₂O)₆]²⁺ (iii) Mg²⁺ has a smaller radius/size or greater charge density the statement of the provide the provided the prov	GCE A LEVEL – May/June 2012 9701 (a) (i) enthalpy/energy change/released when <u>1 mol</u> of <u>ions</u> in the <u>gas phase</u> (are dissolved in) <u>water</u>

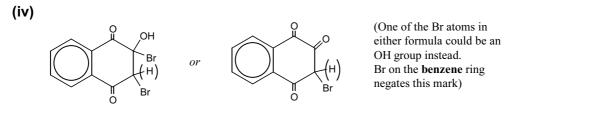
- (b) (apparatus: "insulated" calorimeter, water and thermometer)
 - measure (known volume/mass of) water or stated volume of water (into calorimeter)
 - take the temperature (of the water NOT the $MgCl_2$)
 - weigh out known mass of MgCl₂ or stated mass of MgCl₂
 - take final/highest/constant temperature *or* record temperature change/rise
 4 × [1]
 [4]

(c) (i)	$\Delta H^{e}_{sol} = 641 - 801 = -160 \text{ kJ mol}^{-1}$	[1]
(ii)	ΔH^{e}_{hyd} = (1890 – 2526 – 160)/2 = –398 kJ mol ⁻¹	[2] [3]

(d)

- solubility: MgSO₄ > BaSO₄ *or* decreases down the group
- because ΔH_{sol} is more endothermic for BaSO₄ or more exothermic for MgSO₄
- due to larger r_{ion} or smaller charge density of Ba²⁺ (ion has to be mentioned)
- leading to smaller LE and HE or LE and HE decrease
- but difference in HE (between Mg²⁺ and Ba²⁺) is larger than the difference in LE (between MgSO₄ and BaSO₄)
 or HE is dominant or HE decreases more than LE
 any 4 points [4]

any 4 points [4] [4]


[4]

[Total: 16]

Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2012	9701	42
(a) (i)	:	$\begin{array}{c} & & & & \\ & & & & \\ C & & & + \\ & & + \\ & & & + \\ & & & + \\ \end{array} \end{array} \qquad or \qquad \left(\begin{array}{c} & & \\ \bullet &$	O +	
				[1]
(ii)	inco	mplete combustion (of hydrocarbon fuels) <i>or</i> insufficier	nt O ₂ /air	[1]
(iii)	or C	+ CO $\rightarrow \frac{1}{2}N_2$ + CO ₂ O + $\frac{1}{2}O_2 \rightarrow CO_2$ ation needs to be balanced		[1] [3]
(b) ∆H	= 394	4 – 2 × 111 = (+)172 kJ mol ^{−1}		[2] [2]
(c) (i)	ligar	nd exchange/displacement/replacement/substitution		[1]
(ii)	•	d-orbitals are split (by the ligand field) <i>or</i> orbitals near the splitting/energy gap depends on the ligands (sum (ion) when <u>an electron</u> moves from lower to higher orbita excited light/a photon is absorbed <i>or</i> colour seen/reflected/ colour absorbed ("emitted" contradicts this mark) different energy gap means different frequency absorb	ounding the ion) <i>or</i> the metal r is promoted/ omplement of
(iii)	(<i>or</i> t w.r.t	rows 1 and 3: rate3/rate1 = 2.0 which also equals [[co his working mark can be awarded for any valid calc . complex is 1)	culation that sho	ows that order
		s order w.r.t. [complex] = 1 and order w.r.t. [CO] is zero equation: rate = k[complex])	[1] [1]
(iv)		hanism 2 he only one that does not involve CO in the rate dete	ermining step <i>or</i>	[1]
(10)		complex] <u>only</u> .	sinning ctop of	[1] [11 max 10]

	Page 4	1	Mark Sche	me: Teachers' version	Syllabus	Paper	,
			GCE A LE	VEL – May/June 2012	9701	42	
3	(a) (i)			arene/aryl/benzene/phenyl. mark the <u>first 3</u> the candidate ha		any three	[2]
	(ii)	Law)DNPH/Brady's sone \Rightarrow orange/red, (not yellow) ppt	<i>or</i> FeC <i>l</i> ₃ (aq or neutral) <i>or</i> purple/violet with A ,	<i>or</i> Br ₂ (aq) <i>or</i> white ppt w	ith A ,	[1]
			$\mathbf{A} \Rightarrow \text{nothing}$	or and nothing with Lawsone	<i>or</i> and decolo with Lawsone		[1]

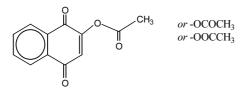
(iii) NaBH₄ or LiAlH₄ or SnC l_2 or Na + ethanol or any suitable reducing agents with $E^{e} < 0.2 V$, e.g. SO₂. **NOT** H₂ + Ni etc. [1]

(b) (i)
$$E_{cell} = 1.33 - 0.36 = (+)0.97 (V)$$
 [1]

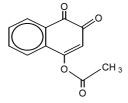
(ii)
$$Cr_2O_7^{2-} + 8H^+ + 3C_{10}H_8O_3 \rightarrow 2Cr^{3+} + 7H_2O + 3C_{10}H_6O_3$$

3:1 ratio [1] balancing [1]

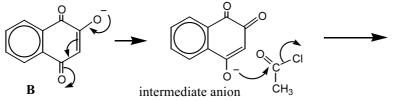
(iii) =
$$0.05 \times 7.5/1000 = 3.75 \times 10^{-4}$$
 mol
n(A) = $3 \times 3.75 \times 10^{-4}$ [1]


=
$$1.125 \times 10^{-3}$$
 in 20 cm³
[A] = **5.63 × 10⁻²** mol dm⁻³ (allow 5.6, 5.62, 5.625 etc.) [1]

[5]


[1] [**6]**

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42


(c) (i) compound C is

(ii) compound D is

(iii) mechanism: 3 curly arrows in **B** or correct intermediate anion [1] a curly arrow from an O^- or an oxygen with a lone pair to the carbon of the C=O group in CH₃COC*l*, and a second curly arrow breaking the C-C*l* bond [1]

[4 max 3]

[1]

[1]

[Total: 14]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

4	(a)	volatility: $Cl_2 > Br_2 > I_2$ or boiling points: $Cl_2 < Br_2 < I_2$ or Cl_2 is (g); Br_2 is (l); I_2 is (s)	[1]
		more <u>electrons</u> in X ₂ down the group <i>or</i> more shells/bigger cloud <u>of electrons</u>	[1]
		so there's greater van der Waals/dispersion/id-id/induced/temporary dipole force/attraction	า [1]
			[3]

(b) (i)	$H_2O > H_2S$ (see * below for mark)	
	due to H-bonding in H_2O (none in H_2S)	[1]
	diagram minimum is: $H_2O^{\delta\delta+}H-OH$ or $H_2O: H-OH$ [allow (+) for $\delta+$]	[1]

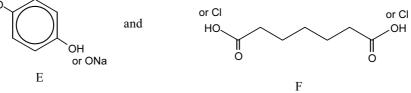
(ii) CH_3 -O-CH₃ > CH₃CH₂CH₃ (see * below for mark) due to dipole in CH₃-O-CH₃ (O is δ - not needed, but O is δ + negates) or CH₃OCH₃ is polar [1] [1]

* correct comparison of boiling points for **both**

(c) SF₆ has 6 bonding pairs/bonds and <u>no lone pairs</u> (bonds can be read into a diagram e.g. S-F, but 'no lone pairs' can only be read into a diagram showing 6 bonded pairs of electrons. [1] clear diagram or 'shape is octahedral' [1] [2]

		_	
гΤ	ota	Ŀ	Q 1
	υια		3

[4]


5	(a)	acidities: $CHCl_2CO_2H > CH_2ClCO_2H > CH_3CO_2H$	[1]
	. ,	due to Cl being (more) electronegative/electron withdrawing (than H).	[1]
		this stabilises the anion or weakens the O-H bond	[1]
			[3]

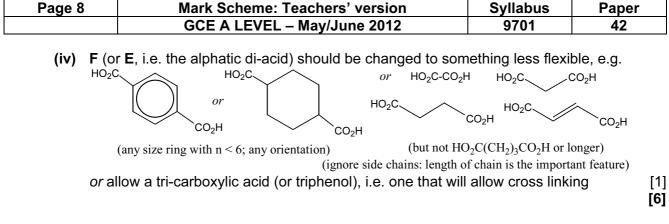
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

(b)				
first compound	second compound	test	observation with first compound	observation with second compound
		Br ₂ (aq) [not (I)]	none	decolourises/ white ppt.
		NaNO ₂ + HC <i>l or</i> HNO ₂ followed by phenol (+ NaOH)	none	yellow/orange/red ppt.
		AgNO ₃ (aq)	(immediate) white ppt.	none
CH ₃ CH ₂ COC1	CH ₃ COCH ₂ C1	add H ₂ O/ROH	steamy/misty/ white fumes	none
	-	(2,4-)DNPH	none	orange ppt.
		I₂/OH⁻	none	yellow ppt./ antiseptic smell
		I₂/OH⁻	none	yellow ppt./ antiseptic smell
		Fehling's/Benedict's solution + warm	red ppt.	none
CH ₃ CH ₂ CHO		Tollens' reagent + warm	silver/black ppt.	none
		$Cr_2O_7^{2-} + H^+ + warm$	turns green	no change
		$MnO_4^- + H^+ + warm$	decolourises	no change

three correct reagents three correct positive results three × 'none'

- (c) (i) condensation
 - (ii) (in parts (ii) and (iii), allow structural formulae instead of skeletal formulae) [1] + [1] or NaO HO

(N.B. letters E and F may be reversed.)


(iii) make acyl chloride from F (if not already there)[1]add that to a solution of E in NaOH(aq)[1]

[1] **[7]**

[1]

[3]

[3]

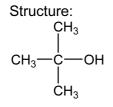
[Total: 16]

6

(a)						
	amino acid	structure	type of interaction			
	alanine	H ₂ NCH(CH ₃)CO ₂ H	van der Waals' (NOT hydrophobic)			
	cysteine	H ₂ NCH(CH ₂ SH)CO ₂ H	<u>di</u> sulfide bonds <i>or</i> S-S			
	lysine	H ₂ NCH((CH ₂) ₄ NH ₂)CO ₂ H	ionic/electrovalent hydrogen/H bonds			
	serine	H ₂ NCH(CH ₂ OH)CO ₂ H	hydrogen/H bonds			

[3] **[3]**

(b)		n – in haemoglobin <i>or</i> red blood cells; transport of oxygen/CO ₂ n myoglobin; transport of oxygen (in muscle)	
		n cytochromes; cell respiration	[1]
	Potassium – in cell membranes/enzymes; controlling the flow of ions/water into c or – in nerves; controlling nerve impulses $cr - Na^{+} - K^{+}$ pump; nerve impulses/control of cell volume/active transport		
		c acting as a <u>cofactor</u> in <u>enzymes</u> (<i>or</i> a named one, e.g. carbonic anhydrase); n making of insulin	[1] [3]
(c)	(i)	$ATP + H_2O \rightarrow ADP + Pi$	[1]
	(ii)	Hydrolysis or nucleophilic substitution	[1] [2]
(d)	(i)	Sodium or chloride (sweat is salty) and Potassium (water retention in cells)	[1]
	(ii)	Hydrogen bonding and reference to water or bonding in mucous molecules	[1] [2]
			[Total: 10]

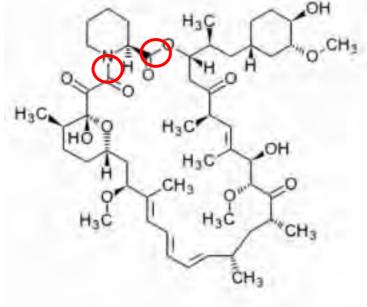

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

- 7 (a) (i) + (ii) any two from:
 - The nature/electronegativity of the atom the proton is attached to *or* is near *or* the electronic/chemical environment of the proton
 - The number/spin states of adjacent protons *or* protons attached to adjacent atoms
 - The (strength of) the applied/external magnetic field
 [1] + [1]
 [2]

(b) (i) Peak at $1.26\delta = (3 \times) CH_3$ or methyl and Peak at $2.0\delta = -O-H$ or alcohol [1]

[1]


(ii)	Isomer	Isomer	Isomer	
	$CH_3CH_2CH_2CH_2OH$	(CH ₃) ₂ CHCH ₂ OH	CH ₃ CH ₂ CH(CH ₃)OH	
	5 groups of peaks	4 groups of peaks	5 groups of peaks	
	structures of any two isomers (Also allow both stereoisomers of butan-2-ol) correct assignation of no. of peaks			[1] + [1] [1] + [1] [6]

- (c) (i) Phosphorus it has more electrons *or* high electron density (NOT phosphate) [1]
 - (ii) H atoms don't have enough electron density to show up *or* they only contain one e^- [1]

[2]

[Total: 10]

	Page 1	10	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – May/June 2012	9701	42
8	(a) (i)		rophilic in area C soluble in area B		[1] [1]
	(ii)		region would be exposed to the atmosphere/water/en: attach to at A	zymes <i>or</i> nothin	g the molecule [1] [3]
	(b) (i)	amio	de/peptide or ester		[1]
	(ii)	hydı	olysis		[1]
	(iii)				
			A OH		

[1] + [1] **[4]**

(c) (i) measured in nm, i.e. between 1 and 1000 nm (or $10^{-9} - 10^{-6} \text{ m}$). Any quoted value or range between these limits is acceptable [1]

(ii) One or both of the –OH groups (NOT just 'oxygen' or 'O')

(iii) PEG can H-bond (with water) because it is hydrophilic/contains an OH group/contains lots of oxygen atoms [1]

[3]

[1]

[Total: 10]