MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	21

1 (a)

(a)								7	
	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_4O_{10}	SO ₂	C <i>l</i> ₂ O ₇		
	alkaline	basic	amphoteric	acidic	acidic	acidic	acidic		
	Na₂O is alka	aline – allow	basic					(1)	
	MgO is basi	c – allow all	aline					(1)	
	A <i>l</i> ₂O₃ is amp	ohoteric						(1)	
	SiO ₂ , P ₄ O ₁₀ ,	and SO ₂ ar	e all acidic					(1)	[4]
	any two fror sodium, pho two names	sphorus, su	lfur and chlori	ine				(1)	[1]
(c)	floats vigorou: melts/fo moves disappe		dissolves				(an	у З)	
(or	$20 \rightarrow NaOl$ $2H_2O \rightarrow 2N$						(1)	[4]
(d)	during t volcanic	he extractio	l fuels – e.g. fi fi n of metals fro purning sulfur	rom car exh om sulfide o	austs or res or			(1)	
(ii) H₂SO₄ or SO₃ al	low H ₂ SO ₃	formula requ	uired				(1)	
(i	ii) acid raiı or its cons		.g. damage t damage t deforesta	o crops, pla	nts, marine	life			
	or SO₃ is t	oxic						(1)	[3]
	it is a reduci	ng agent/an	tioxidant						
	or it kills bacter	ria						(1)	[1]

	Page	3 Mark Scheme: Teachers' version Sy	llabus	Paper	,
		GCE AS/A LEVEL – May/June 2012 9	9701	21	
	(f) (i)	$ \begin{array}{c} \circ \\ \circ $			
		\bigcirc \bigcirc \bigcirc \circlearrowright		(1)	
	(ii)	180°		(1)	[2]
				[Total:	: 15]
				-	-
2	cor	$H_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$ rect products rectly balanced equation		(1) (1)	[2]
	(b) (i)	NaOH + HC $l \rightarrow NaCl + H_2O$		(1)	
	(ii)	$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$		(1)	
	(iii)	$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$		(1)	
	(iv)	n(NaOH) used up = 0.10 - 0.0312 = 0.0688 = 0.07		(1)	
	(v)	$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$		(1)	
	(vi)	mass of $(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$		(1)	
	(vii)	percentage purity = $\frac{4.5408 \times 100}{5.00}$ = 90.816 = 90.8		(1)	[7]

	Page 4			rk Scheme: Teachers' version		Syllabus	Paper	,	
				GCI	E AS/A LEVEL – May/June 2012		9701	21	
3	(a)			$_{2}(g) \rightarrow CO_{2}$	(g) energy change/heat change when			(1)	
				e of a compo				(1)	
		is formed from its elements in their standard states						(1)	[3]
	(b)	(i)	$\Delta H^{e}{}_{f}$	/kJ mol ⁻¹	$\begin{array}{rrr} CO_2(g) &+& 3H_2(g) \rightleftharpoons CH_3OH(g) \\ -394 & 0 & -201 \end{array}$	g) +	H ₂ O(g) –242		
			ΔH^{Θ}_{r}	_{eaction} = –20 kJ mol ^{−1}	1 + (–242) – (–394)			(1)	
				ect sign				(1) (1)	
		(ii)		-	rom the atmosphere			(1)	
			CO ₂	is a greenho	ouse gas/causes global warming			(1)	[5]
	(c)				ase, the 'effect' must be correctly st xplanation mark.	tated			
		hig	her to	emperature					
					ibrium goes to LHS ction is exothermic/reverse reaction	ia and	othormio	(1)	
		Dec	ause	IUI Walu lea			Strennic	(1)	
		-	-	oressure	equilibrium goes to RHS			(1)	
					es on RHS or more moles/molecule	es on Ll	HS	(1)	
				atalyst					
				es not chang and backwar	e d rates speeded up by same amoui	nt		(1) (1)	[6]
								[Total:	141
								Liotai	1

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2012	9701	21	
4	(a) (i)	C ₂ H	$_{5}OH \rightarrow C_{2}H_{4} + H_{2}O$		(1)	
	(ii)	elim	ination or dehydration		(1)	
	(iii)	sulfu	sphoric acid or concentrated sulfuric acid uric acid must be 'concentrated' v aluminium oxide		(1)	[3]

(b)

	with HBr	with MnO₄ [−]
colour at start	colourless	purple or pink
colour after reaction	colourless	colourless or decolourised
structural formula of product	CH₃CH₂Br	HOCH ₂ CH ₂ OH

with hydrogen bromide		
from colourless to colourless both colours required		
do not allow 'clear' instead of colourless	(1)	
CH ₃ CH ₂ Br	(1)	
with potassium manganate(VII)		
from purple/pink to colourless/decolourised both colours required	(1)	
HOCH ₂ CH ₂ OH	(1)	[4]
	()	

(c) (i)
$$C_6H_{10}$$
 (1)

(ii)

Br Br

accept answers which have $-CH_2$ in the ring

(iii) electrophilic (1) addition (1)

(iv)

CO₂H

or

$HO_2C(CH_2)_4CO_2H$ or		
$HO_2CCH_2CH_2CH_2CO_2H$	(1)	
accept answers which have $-CH_2$ - in the ring		[5]

[Total: 12]

(1)

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9701	21	
5	(a) car	boxyli	c acid or –CO ₂ H or –COOH		(1)	[1]
	(b) (i)	alco	hol		(1)	
	(ii)	n(H₂	$=\frac{160}{24000} = 6.67 \times 10^{-3} \text{ mol}$		(1)	
		<i>n</i> (H	atoms) = $2 \times 6.67 \times 10^{-3}$ mol = 1.33×10^{-2} mol		(1)	
	(iii)	n(X)	$=\frac{0.600}{90}$ = 6.67 × 10 ⁻³ mol			
			$: n(H \text{ atoms}) = 6.67 \times 10^{-3} : 1.33 \times 10^{-2}$			
		since	e each –OH group produces one H atom e are two –OH groups		(1)	[4]
	(c) (i)		r = r = c = 0		(1)	
	(ii)		CH ₂ CH(OH)CHO as the minimum v the <i>gem</i> diols(HO) ₂ CHCH ₂ CHO or CH ₃ C(OH) ₂ CHO		(1)	
	(iii)	НОС	$CH_2CH(OH)CO_2H$ or $HOCH_2CH(OH)CO_2^-$		(1)	[3]
	(d) (i)	нос	CH ₂ CH(OH)CH ₂ OH		(1)	
	(ii)	HO ₂	CCOCO ₂ H		(1)	[2]
					[Total:	10]