MARK SCHEME for the May/June 2011 question paper

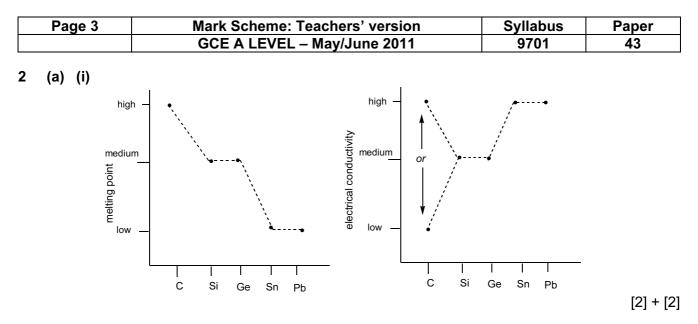
for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2					eachers' - May/Ju						labus 701		Paper 43
I (a) [H pl	ી⁺] = Η = ·	√(0.05 -log₁₀(5				× 10 ⁻³ m								[1] [1] [2]
(b) (i		ønsted uilibriun	•) acio	d-base/	/proton tra	ansfer/r	neut	ralisa	ation	/exo	hermi	c/rever	sible/ [1]
(ii	i)										~			
	н	•• • N •+ н	‡ н		Нţ	•• F :	Н	ţ	H •• N ‡ •+ H	н	(+)	•• F •	Θ	
		[1]			[′	1]				[1]			3 x [1]
(iii	cov da ion	tive: be ic: betv	betwee tween veen N	$H_4^+ \& F^-$	$$ or N^+	& F [−] or a	mmoniu	um a	and f	luor <u>i</u>	de (i	.e. in v	vords)	[1] [1]
	or	betwee	n (opp	ositely c	harge)	ions								[1]
(iv	hig lov	h temp / pressi	erature ure, be	cause r	se reve everse	erse reac reaction re/volume	causes				in no	o. of <u>g</u>	aseous	[1] molecules [1] [9]
(c) (i	i) 4N	H ₃ + Cι	JS + 20	$O_2 \rightarrow [0]$	Cu(NH:	3)4]SO4								[1]
(ii	i) de	ep/dark	/royal	blue <i>or</i> p	ourple [NOT viol	et]							[1]
(iii						to light b								
	⇒ or	hexaqu ligand e	iocopp exchan	er(II) ior ge (of N	n <i>or</i> [Cι IH₃) by	u(H ₂ O) ₆] ^{2·} H ₂ O	or [Cu	I(H ₂ (O) _n (N	IH ₃) _a	_n]~',	where	e a = 4	or 6 [1] [4]
						cement/re ad of 'liga						ced by	, chlorid	[1] de")
						sibilities) ⁺ + nC <i>T</i> -	→ [Cu(H₂C	0) _{6–n} C	; <i>l</i> n] ^{2–1}	י + n	H₂O		[1] [1]
[C [C	Cu(H ₂ 0 Cu(H ₂ 0	$(D)_6]^{2+} + (D)_6]^{2+} + (D)_6^{2+} + ($	2C <i>T</i> - 4C <i>T</i> -	\rightarrow [Cu(ł \rightarrow [CuC	H ₂ O) ₄ C ; _{l4}] ²⁻ + (D		Exam	ples	fron	n man <u>y</u>	y possi	ble are:
						HS, for e 2H⁺ + 6H			CuC	l4 ^{2–} +	· 4H⁺	+ 6H ₂	<u>0</u>	[3]
												ſ	Total: [•]	18 max 17]

 (ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding (or implied from at least two specific examples, e.g. diamond and tin) [1] (mention of *simple* covalent anywhere negates this mark)

conductivity trend: increasing delocalisation of electrons (down the group) [1] or e^- are more free-moving (or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e^-)

[6]

(b)	(i)	heat PbO ₂ , or T > 200°C or Δ on arrow: PbO ₂ \rightarrow PbO + $\frac{1}{2}O_2$ (N.B. $\frac{1}{2}O_2$ NOT [O])	[1]

(ii)	(burning CO in air produces CO ₂):CO + $\frac{1}{2}O_2 \rightarrow CO_2$ blue flame (ignore ref to limewater test)	[1] [1]
(iii)	e.g. SnC $l_2(aq)$ will turn KMnO ₄ from purple to colourless 5Sn ²⁺ + 2MnO ₄ ⁻ + 16H ⁺ \rightarrow 5Sn ⁴⁺ + 2Mn ²⁺ + 8H ₂ O	[1] [1]
	or SnC $l_2(aq)$ will turn K ₂ Cr ₂ O ₇ from orange to green 3Sn ²⁺ + Cr ₂ O ₇ ²⁻ + 14H ⁺ \rightarrow 3Sn ⁴⁺ + 2Cr ³⁺ + 7H ₂ O	[1] [1]
	or SnCl ₂ (aq) will turn Fe ³⁺ from orange/brown/yellow to green/colourless Sn ²⁺ + 2Fe ³⁺ \rightarrow Sn ⁴⁺ + 2Fe ²⁺	[1] [1]
	or SnCl ₂ (aq) will turn Cu ²⁺ (aq) from blue to colourless or give a pink/brown/c coloured ppt. Sn ²⁺ + Cu ²⁺ \rightarrow Sn ⁴⁺ + Cu	opper- [1] [1]

Other possible oxidants (E^{e} must be > +0.2V) include: $S_2O_8^{2-}$, H_2O_2 , Cl_2 , Br_2 , I_2 and Ag^+ . No observations with the first three of these, but this should be stated explicitly, e.g. "no colour change".

[5]

[Total: 11 max 10]

Page	4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2011	9701	43
3 (a) L∍	= F/e c	prF=Le		[1] [1]
(b) (i))			
		anode A		
	allo	w the conventional symbol $-$ to represent $+$ (t	he "P.S." is not requi	red)
	amm anoo	ect cell (2 electrodes + PS circuit) neter in series de and cathode of the right polarity [IN WORDS] $O_4(aq)$ or CuCl ₂ (aq) or Cu ²⁺ (aq) or soln or 1 mol dm ⁻³		[1] [1] [1]
(ii)	n(Cu n(e ⁻)	a) = $(52.542-52.243)/63.5 = 4.71 \times 10^{-3} \text{ mol} (4.67)$) required = $4.71 \times 10^{-3} \times 2 = 9.42 \times 10^{-3} \text{ mol} (9.34)$	× 10 ⁻³) I × 10 ⁻³)	[1] ecf [1]
		unt of electricity passed = $0.5 \times 30 \times 60 = 900 \text{ C}$ of electrons passed = $900/1.6 \times 10^{-19} = 5.625 \times 10^{21}$		[1] ecf [1]
	14	$f_{a} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} $	7 w 4 023 m a l=1 /0	00 4023)

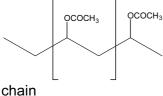
no of electrons/n(e⁻) = L = $5.625 \times 10^{21}/9.42 \times 10^{-3} = 5.97 \times 10^{23} \text{ mol}^{-1} (6.02 \times 10^{23}) \text{ ecf [1]}$

(values in italics are if candidate has used $A_r = 64$, not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]

(c)

compound	product at anode	product at cathode
AgF	O ₂	Ag
FeSO ₄	O ₂	H ₂
MgBr ₂	Br ₂	H ₂

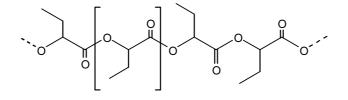
 $\begin{array}{l} \text{6 correct} \Rightarrow [5] \\ \text{5 correct} \Rightarrow [4] \text{ etc.} \end{array}$


Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g. Br_2 etc.) then deduct [1] mark only for the whole table.

[5]

[Total: 15]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	43


4 (a) (i) (allow displayed, structural or skeletal formula)

chain
repeat unit[1]
[1](ii)C should be CH2=CHOH (or skeletal formula)[1](iii)C is CH3CH=O (or skeletal formula)[1](iv)e.g. add (2,4-)DNPH or DNP or Brady's reagent
orange or red ppt forms (NOT yellow)
(or could use Fehling's or Tollens',ecf [1]

or $H^+ + Cr_2O_7^{2-}$: orange to green, or $H^+ + MnO_4^-$: purple to colourless) [6]

(b) (i) (allow displayed, structural or skeletal formula)

D correct repeat unit bracketed (any 3 atoms in chain)

(ii) ester

[1]

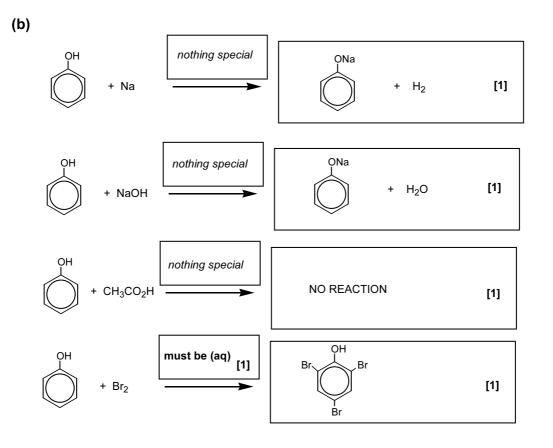
[1]

- (iii) **E** is CH₃CH₂CH(OH)CO₂H (*or* skeletal structure etc.)(2-hydroxybutanoic acid) [1] allow ecf here from the formula of the repeat unit shown in **(b)(i)**
- (iv) <u>condensation</u> (polymerisation)
- (v) they have the same "molecular" formula or C₄H₆O₂ (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers

[5]

[1]

© University of Cambridge International Examinations 2011 www.theallpapers.com

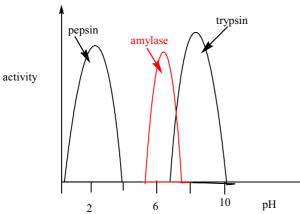

Page 6	Mark Scheme: Tea	chers' version	Syllabus	Paper
	GCE A LEVEL – M	ay/June 2011	9701	43
(c) (i) opti (ii)	cal isomerism (<i>or</i> chiral)			[1]
(")		D₂H		
(lett	F G ers may be reversed)(allow ec	f from E , also allow ecf	for G from F)	[1] + [1]
cis-	rans <i>or</i> geometrical isomerism	1		[1] [4]
				[Total: 15]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	43

5 (a) acidity: ethanol < water

[1] due to +ve inductive effect of C₂H₅ group or C₂H₅ gives e⁻ to oxygen or intensifies e⁻ (in O-H bond) [1] acidity: phenol > water [1]

due to stabilisation of the anion/anionic charge or makes the anion less basic


[5]

[1]

[4]

(c) H is OH	
Y NO ₂	[1]
reagents & conditions: step 1 dilute HNO ₃ (dilute, not just 'aq'. H ₂ SO ₄ negates)	[1]
step 2 Sn/SnC1 ₂ /Fe + HC1 or H ₂ + Ni/Pd (NOT H ₂ + Pt. NOT LiA1H ₄ or NaBH ₄)	[1]
step 3 CH ₃ COC <i>l or</i> (CH ₃ CO) ₂ O ('aq.' negates)	[1] [4]
	[Total: 13]

	Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2011	9701	43
6		are polar/ionic <i>or</i> can hydrogen-bond <i>or</i> are hydrophilic. 'contain the –OH group', on its own)		[1] [1]
	S T	rimary structure is the <u>sequence/order</u> of <u>amino acids</u> econdary structure is the H-bonding between C=O & N- ertiary structure gives the (overall) 3D structure/shape/fo ot 'coiling' on its own)		[1] ıp/bonds [1]
		r mention of at least one method of forming the 3° str etween R-groups/side chains; –S-S- bridges; van der		• •
	0	ne 3° structure provides a complementary shape to that r it provides the right/specifically shaped cavity for the <u>subs</u> r provides nearby groups to aid the reactions of the <u>subs</u>	<u>ıbstrate</u> . (NOT ju	st 'a cleft') [1]
	(a (k (c (c (c S (i	 wo conditions out of the following:) Increased temperature) Decreased temperature) Change in pH) Addition of heavy metals (<i>or</i> specified, e.g. Hg/Ag)) Addition of inhibitors (competitive or non-competitive) uitable reasons: 3D structure changes shape/is deformed/is broken o example, e.g. H-bonding) are broken 		s (or a specific
) inhibitor occupies active site. i) <i>either</i> fewer substrate molecules with E > E _a or fewer	successful collis	ions [2] [6]
	(c) (i)	4		

left hand peak labelled as pepsin right hand peak labelled as trypsin (Correct enzymes, but wrong way round, scores [1] only)

(ii) Peak between pH 6 and pH 8, and correct name (amylase)

[1] **[3]**

[1] [1]

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	43

7 (a)

Number	Process	Correct sequence (numbers)
Α	Place samples on agarose gel	4
В	Use polymerase chain reaction	3
С	Label with radioactive isotope	6
D	Extract DNA	1
E	Use restriction enzyme	2
F	Carry out electrophoresis	5

mark as follows:	if A is just before F (i.e. A = 4, F = 5 or A = 5, F = 6)	[1] mark
	if D = 1 and E = 2	[1] mark
	if C = 6	[1] mark
		[3]

(b) (i) P *or* phosphorus (NOT phosphate)

(ii) Phosphate groups are present in DNA *or* it makes the DNA fragments/bands etc. visible *or* locates their position *or* identifies them on a photographic plate etc. [1] (NOT because it's radioactive *or* makes the bands coloured)

-

[1]

[2]

- (c) (i) Yes, all 4 children share one/some band (*or* match/gene/fragment/part/DNA/ amino acid) with the mother's (DNA) (NOT the general statement "matches the mother's DNA")
 - (ii) Child 2, since he/she shares none of the bands of father's DNA/fingerprint or their fingerprint/DNA does not match the father's DNA (the general "match" is OK here) [1]
 [2]
- (d) (i) Compare DNA fingerprint for each fragment (can be read into use of the word 'same' below) [1]
 Match the DNA patterns to determine which came from which skin [1]
 - (ii) A named example of biological origin (N.B. a material, not a whole organism) [1]
 e.g. leather (= bull skin), pollen, fish scales, leaves, seeds, feathers, hair, blood, textiles (or a named one like wool or silk or cotton or linen/flax), wood.

(N.B. NOT human or goat skin, also not metal, pottery or stone. If more than one material is given, mark the first one)

[3]

[Total: 10]

	Page 10		0	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE A LEVEL – May/June 2011	9701	43	
8	(a) Range should be from 10 ⁻⁶ −10 ⁻⁷ (the left hand arrow) to 10 ⁻⁸ −10 ⁻⁹ (the right hand arrow)						
	(b)	Forms of the same element (<i>or</i> of carbon , since carbon is the context of the question) with different structures/arrangements of atoms allow 'different molecular structure', but not structural formula. Any mention of 'compounegates the mark.					
	(c)	Nanoparticles are smaller than (animal) cells <i>or</i> they can pass through the cell membrane or pass into/between cells Drugs can be bound to/enclosed by the nanoparticle					
	(d)	(i)	Red	uction/redox		[1]	
		(ii)		f chalcopyrite is 63.5 + 56 + 64 = 183.5 s of copper present is 63.5			
				ce percentage of copper present = $\frac{63.5 \times 100}{183.5}$ = 34.6%	6	[1]	
		(if A _r (Cu) = 64 is used, ans = 34.8 %. allow 34–35 %)					
	(iii) If the ore contains 2% of chalcopyrite by mass, calculate how much copper is from each tonne of ore.				er is produced		
			1 tor 1 tor (acc ansy	nne = 1000 kg nne of chalcopyrite would produce 346 kg of copper nne of 2 % ore would produce 346 × 0.02 or 6.9 kg of c ept 7.0 or 7 kg) ver may be given as 7000 g or 7 × 10 ⁻³ tonnes. If no connes, and mark accordingly)			
		(iv)		lisplacement with a metal (the following specified met be used: Fe, Zn, Sn, Pb, A <i>l</i> , Mg. (NOT Ca, Li, Na.			

may be used: Fe, Zn, Sn, Pb, A*l*, Mg. (NOT Ca, Li, Na. K etc.) *or* with a suitable nonmetallic reducing agent, e.g. SO₂ or Sn²⁺, but not something that wouldn't react, like H₂ *or* By electrolysis (with carefully controlled voltage) [1]

[4]

[Total: 10]