MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/35
Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	35

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	35

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	35

2 (a)	PDO layout	I All data presented clearly in all three sections. $(6,6,7)$	1	
	PDO recording	II Has correct headings and units on page 7.	1	
		III All thermometer readings recorded to nearest $0.5^{\circ} \mathrm{C}$ in each of the experiments	1	
		IV Each pair of balance readings consistent and to at least 1 decimal place	1	[4]
(b)	Examiner to calculate (corrected) $\Delta T_{1} / m_{1}$ and $\Delta T_{2} / m_{2}$ for Supervisor and candidate. Compare candidate value with the same value from the Supervisor report. Award Q marks on the closer value.			
	MMO	Award I and II for $\delta \quad 0.10^{\circ} \mathrm{Cg}^{-1}$	1	
	quality	Award I only for $0.10<\delta \quad 0.30^{\circ} \mathrm{Cg}^{-1}$	1	[2]
(c)	MMO collection	I Follows instructions - weighs between 8.5 and 9.5 g of FA 6 (mass bottle with FA 6 - mass bottle)	1	
	PDO layout	II Check $\Delta \mathrm{m}$ and $\Delta \mathrm{T}$ are correct in (c)	1	[2]
(d)	ACE interpretation	Examiner to check there is no obvious error in the evaluation of the expression, then award one mark for a mass of sodium carbonate between 2.5 and 3.5 g .	1	[1]
(e)	ACE improvements	Give one mark for: suggesting weighing, heating and weighing again, or weighing, heating and measuring gas volume or giving an outline for a titration method using 2 indicators.	1	[1]
			[Total: 10]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	35

FA 8 is $\mathrm{NaCl}(\mathrm{aq})$; $\mathbf{F A} 9$ is $\mathrm{NaNO}_{2}(\mathrm{aq})$; FA 10 is $\mathrm{NaBr}(\mathrm{aq})$; $\mathbf{F A} 11$ is $\mathrm{CuSO}_{4}(\mathrm{aq})$; $\mathbf{F A} 12$ is $\mathrm{MgSO}_{4}(\mathrm{aq})$

3 (a)	MMO decisions	Selects any named acid	1	
	MMO collection	Records brown gas with FA 9 and no reaction with FA 8 and FA 10	1	[2]
(b)	MMO decisions	I Selects: (correct full name or formula) silver nitrate as first reagent, aqueous ammonia as second reagent, aqueous ammonia added to tube with $\mathrm{Ag}^{+}, 1^{\text {st }}$ box ticked (do not allow if Pb^{2+} used as $2^{\text {nd }}$ reagent) or lead nitrate as first reagent, silver nitrate as second reagent, $\mathrm{Ag}^{+}(\mathrm{aq})$ added to fresh sample, $2^{\text {nd }}$ box ticked	1	
	MMO collection	II If Ag^{+}used as $1^{\text {st }}$ reagent Give one mark for white ppt with FA 8 and cream ppt with FA 10 If Pb^{2+} used as $1^{\text {st }}$ reagent Give one mark for white ppt with FA 8 and FA 10 If FA 9 not previously identified then no change/no reaction/no ppt (ignore any yellow colouration of solution with $P b^{2+}$)	1	
		III If Ag^{+}used as $1^{\text {st }}$ reagent (with NH_{3} as $2^{\text {nd }}$) Give one mark if white ppt with FA 8 is soluble in aqueous ammonia and cream ppt with FA 10 is insoluble or partially soluble in aqueous ammonia If Ag^{+}used as $1^{\text {st }}$ reagent (with Pb^{2+} as $2^{\text {nd }}$) Allow observations marks If Pb^{2+} used as $1^{\text {st }}$ reagent (with Ag^{+}as $2^{\text {nd }}$) Give one mark for white ppt with FA 8 and Ag^{+} and cream ppt with FA 10 and Ag^{+}. Ignore observations for FA 9.	1	[3]
(c)	ACE conclusion	Mark consequentially on observations; Give one mark for appropriate anions identified for FA 8, FA 9 and FA 10. (Allow from off-white or cream ppt for $\mathrm{Br}^{-}+\mathrm{Ag}^{+}$)	1	[1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	35

(d)	PDO recording	I Observations in a single table. All additions of $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$ shown to excess where there is an initial ppt	1	
	MMO collection	II All observations correct for FA 11 (Blue ppt in each, blue ppt insoluble in excess NaOH , soluble in excess NH_{3} or forming/turning to a deep/dark blue solution)	1	
		III All observations correct for FA 12 (White ppt insoluble in each)	1	[3]
(e)	ACE conclusion	I Mark consequentially to observations. Expected conclusion is Cu^{2+} in FA 11 and Mg^{2+} in FA 12 Allow Ca^{2+} from white ppt insoluble in excess NaOH and no ppt with NH_{3}.	1	
		II Gives appropriate evidence for each ion in the conclusion. Minimum evidence required for the expected ions: Cu^{2+} Records a blue ppt with either of the reagents or deep blue solution with excess NH_{3}. $\mathbf{M g}^{\mathbf{2 +}}$ White ppt insoluble in excess NH_{3} (or in each of the reagents)	1	[2]
(f)	MMO collection	I Blue, black, purple colour observed on adding starch in (ii)	1	
		II The brown (solution) or (brown) solution formed in (i) is decolourised/colour fades/paler or brown (solution) in (i) and white, off-white or light brown ppt recorded.	1	
	ACE conclusion	Award III and IV for two correct pairs	1	
		Award III only for one correct pair Expected results (i) I^{-}is oxidised, Cu^{2+} is reduced (ii) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is oxidised, I_{2} is reduced Mark horizontally or vertically.	1	[4]
	[Total: 15]			

