MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS/A LEVEL – May/June 2011	9701	21	
1	(a)			oaraffins ocarbon		(1)	[1]
	(b)	2 C ₁	$_{14}H_{30}$	+ 43 $O_2 \rightarrow$ 28 CO_2 + 30 H_2O or			
		C ₁₄ H	⊣ ₃₀ +	$^{43}/_{2}O_{2} \rightarrow 14 \text{ CO}_{2} + 15 \text{ H}_{2}O$		(1)	[1]
	(c)	(i)	mas	s of C ₁₄ H ₃₀ burnt			
				<u>5 x 10.8</u> = 88.506 = 88.5 t 000		(1)	
		(ii)	mas	s of CO ₂ produced			
			<i>M</i> _r of	$f C_{14}H_{30} = (14 \times 12 + 30 \times 1) = 198$		(1)	
			2 x 1	98 t of $C_{14}H_{30} \rightarrow$ 28 x 44 t of CO_2			
			88.5	t of $C_{14}H_{30} \rightarrow \frac{28 \times 44 \times 88.5}{2 \times 198}$		(1)	
			= 27	5.3 t of CO ₂		(1)	
				v 275.4 t if candidate has used 88.506 v ecf on wrong value for M_r of $C_{14}H_{30}$			[4]
	(d)	n =	<u> PV</u> =	= <u>6 x 10⁵ x 710 x 10⁻⁶</u> 8.31 x 293		(1)	
			<i>RT</i> 0.17			(1)	[2]
	(e)	P =	<u>nRT</u> V	= <u>0.175 x 8.31 x 278</u> 710 x 10 ⁻⁶		(1)	
		=	5694	10.5634 Pa = 5.7 x 10 ⁵		(1)	
		allo	w ecf	on (d)			[2]
						[Total:	10]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9701	21	
2	(a) (i)		ak large hydrocarbons into smaller hydrocarbons or ak down large hydrocarbons		(1)	
			ller hydrocarbons are more useful or ller hydrocarbons are more in demand		(1)	
	(ii)		g high temperatures/thermal cracking or g catalysts/catalytic cracking		(1)	
	(iii)	C ₁₄ H C ₁₄ H C ₁₄ H	$H_{30} \rightarrow C_7 H_{16} + C_7 H_{14}$ or $H_{30} \rightarrow C_7 H_{16} + C_2 H_4 + C_5 H_{10}$ or $H_{30} \rightarrow C_7 H_{16} + C_3 H_6 + C_4 H_8$ or $H_{30} \rightarrow C_7 H_{16} + 2 C_2 H_4 + C_3 H_6$ not allow any equation with H_2		(1)	[4]
	(b) et	hanol I	nas hydrogen bonding, ethanethiol does not		(1)	[1]
	(c) (i)	2 C ₂ I corre	$_{5}SH + {}^{9}I_{2}O_{2} \rightarrow 2CO_{2} + SO_{2} + 3H_{2}O \text{ or}$ $H_{5}SH + 9O_{2} \rightarrow 4CO_{2} + 2SO_{2} + 6H_{2}O$ ect products ect equation which is balanced		(1) (1)	
	(ii)		CO₂ anced greenhouse effect al warming		(1) (1)	
		dam diss dam	nation of acid rain nage to stonework of buildings/ olving of aluminium ions into rivers/ nage to watercourses or forests/		(1)	
			atic life destroyed/ osion of metals		(1)	[6]
	(d) he	elp dete	ect leaks of gas		(1)	[1]
	pr	temperature of 450°C pressure of 1 – 2 atm V_2O_5 /vanadium(V) oxide/vanadium pentoxide catalyst			(1) (1) (1)	[3]
					[Total:	15]

Page 4		je 4		Teachers' version	Syllabus 9701	Paper 21	,
			GCE AS/A LEVE	GCE AS/A LEVEL – May/June 2011			
3		U(aq) CaC <i>I</i> ₂	dilute HC≀	Ca(s) roas		(s) CaO	
				H ₂ O(I)	H ₂ O(I)	dilute HNO ₃	
		Na	a₂CO₃(aq)	X(s) Ca(OH)₂		(aq) №3)2	
		ļ		dilute H ₂ SO ₄	reaction 1		
		Y(s) CaCO	3	Z(s) CaSO4			
	(a)	U V W X Y	$CaC l_2$ CaO Ca(NO ₃) ₂ Ca(OH) ₂ CaCO ₃			(1) (1) (1) (1) (1)	[5]
			ongly in a test-tube or a bo Illow 'heat gently' or 'reflux'			(1)	[1]
	(c)		to U + 2HC $l \rightarrow CaCl_2 + H_2$			(1)	
		V to Cat	ϕ W D + 2HNO ₃ → Ca(NO ₃) ₂ +	H ₂ O		(1)	
		U to Cat	\mathbf{P} Y C l_2 + Na ₂ CO ₃ → CaCO ₃ + 2	2NaC <i>l</i>		(1)	
	((ii) 2Ca	$a(NO_3)_2 \rightarrow 2CaO + 4NO_2 +$	- O ₂		(1)	[4]

(d) $Na_2SO_4(aq)/K_2SO_4(aq)$ or formula of any soluble sulfate (1) [1]

Page \$			Syllabus	Paper	٢
		GCE AS/A LEVEL – May/June 2011	9701	21	
(e) (i)	Ca to X colourless gas formed/fizzing/effervescence/bubbles or Ca dissolves or white precipitate/suspension formed			(1)	
(ii)	stea surfa	ngly exothermic/vigorous reaction or m formed/steamy fumes or ace crumbles lot allow white ppt.		(1)	[2]
				[Total:	13
(a) (i)		eophilic addition n words are necessary		(1)	
(ii)	HCN	N and H₂SO₄ or I plus CN [−] lot allow HCN on its own		(1)	
(iii)	corr	ect δ + and δ -, i.e. δ + δ - C=0		(1)	[3]
(b) (i)		ect organic product NO_2			
	C=N	I bond must be clearly shown formed/ equation balanced		(1) (1)	[2]
(ii)		H ₃ C С=NОН H ₃ C		(1)	[1]

[Total: 6]

	Pa	ige 6	;	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2011	9701	21	
5	(a)	Ca	C ₂ +	$2H_2O \rightarrow Ca(OH)_2 + C_2H_2$		(1)	[1]
	(b)	(i)	step step	addition		(1) (1) (1)	
		(ii)		ent NaOH/KOH/OH ⁻ litions in alcohol/ethanol allow conditions mark if reagent is correct		(1) (1)	[5]
	(c)	(i)		CH₃CHO (as minimum) CH₃CO₂H (as minimum)		(1) (1)	
		(ii)		3 is addition 4 is oxidation/redox		(1) (1)	[4]
	(d)	(i)	C ₂ H; equa H ₂ C	bustion $_{2}(g) + {}^{5}/_{2}O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(I)$ or ation must be for the combustion of one mole of C ₂ H ₂ 0 must be shown as liquid ect state symbols in this equation		(1) (1)	
			2C(s	hation $H_2(g) \rightarrow C_2H_2(g)$ hark for state symbols here		(1)	
		(ii)	let Z	\mathbf{Z} be ΔH^{e}_{f} of $C_{2}H_{2}$			
			∆ <i>H</i> ^e f	$C_2H_2 + {}^{5}/_2O_2 \rightarrow 2CO_2 + H_2O$ Z 0 2(-394) -286			
				₂ = -1300 = 2(-394) + (-286) − Z nce Z = 2(-394) + (-286) − (-1300)		(1)	
			valu sign	26 kJ mol ⁻¹ e v ecf on wrong equation		(1) (1)	[6]
						[Total	161

[Total: 16]