MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2 Mark Scheme: Teachers' version Syllabus F GCE A/AS LEVEL – May/June 2009 9701 1			Paper 04	,																
							<u> </u>		Sect	-								<u>.</u>			
1	(a)					donors ⁺ accep														[1] [1]	[2]
	(b)	(i)	(NOT beca	⁻ just ' use th	"the i ne an	produc more C iion/RC tronega	l ato $O_2^- \text{ i}$	ms, t s mo	he lar re sta	rger able	the or	K _a " the	– m O-ŀ	iust H bo	ref ond	er to is w	acid	stren	gth)	[1]	
		(ii)	рΗ			= 0.0 = 1.9 r = [2])	0114)4 (al	(mol low 1	l dm ^{-≋} 1.9)	³) e	cf fr	om	[H⁺]							[1] [1]	
		(iii)																			
					рН			5 volu	ime of	1 NaO		ded /	15 / cm ³			20					
			steep	o porti	on (c	94 (ecf over at l H 12–13	least	(ii) a 3 pH	and go I units	oes s) at	up : t V =	2 < 10 =	pΗ ι cm³	unit	s be	efore	e stee	p por	tion)	[1] [1] [1]	[8]
	(c)	(i)	CH₃C	CO₂H	+ 0)H⁻	\rightarrow	CH₃(CO₂ [−]	+	H₂O									[1]	
			CH₃C	CO ₂ ⁻ -	+ H⁺		→ Cł	H₃CC	D₂H											[1]	
		(ii)	pH =	⊧ pK _a	+ log	7 x 10 ⁻⁵ g ₁₀ (0.2/(r = [2])							10-"	³ (m	nol d	dm ⁻³)			[1] [1]	[4]
																			[Total	: 14]
								ſ	DUCI	FS	2000)									

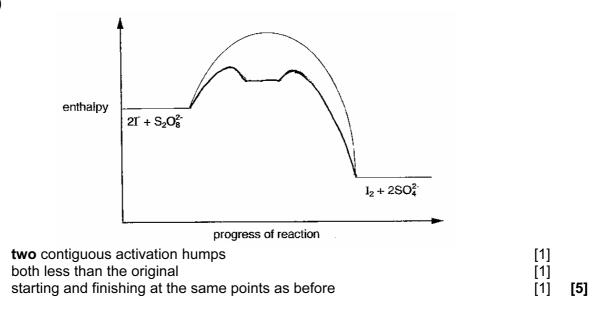
	Pa	ige 3	Mark Scheme: Teachers' version	Syllabus	Paper	r
			GCE A/AS LEVEL – May/June 2009	9701	04	
2	(a)	NaC <i>l</i> :	steamy fumes NaCl + H ₂ SO ₄ \longrightarrow NaHSO ₄ + HCl (<i>or</i> ionic, i.e. v	without the Na^+)	[1]	
		or	$2NaCl + H_2SO_4 \longrightarrow Na_2SO_4 + 2HCl$		[1]	
		NaBr:	orange/brown fumes	_	[1]	
		or	$\begin{array}{rcl} 2\text{NaBr} + 3\text{H}_2\text{SO}_4 & \longrightarrow & 2\text{NaHSO}_4 + 2\text{H}_2\text{O} + \text{SO}_2 \\ 2\text{HBr} + \text{H}_2\text{SO}_4 & \longrightarrow & 2\text{H}_2\text{O} + \text{SO}_2 + \text{Br}_2 \\ (\text{ignore equations producing HBr}) \end{array}$	+ Br ₂	[1]	[4]
	(b)	releva	nt <i>E</i> ^e quoted: C <i>l</i> ₂ /C <i>l</i> ⁻ , 1.36; Br ₂ /Br ⁻ , 1.07; (H ₂ SO ₄ /SO ₂ , 0.	17 – not required)	[1]	
			more easily oxidised because its E° is more negative is more oxidising because its E° is more positive		[1]	[2]

(c) Allow almost any reducing agent from the Data Booklet (see below) with E^{\bullet} less than 1.07 V.

But do not allow reducing agents that require conditions that would react with Br_2 in the absence of the reducing agent (e.g. NH_3 or OH^-), and also do not allow "reducing agents" that could produce, or act as, oxidising agents (e.g. MnO_4^{2-} and H_2O_2)

balanced equ. showing reduction of Br ₂ by the chosen reducing agent		
(either ionic or molecular)	[1]	
$E^{\circ} = 1.07 - (E^{\circ} \text{ of reductant}) = \mathbf{x.xx} (\mathbf{V}) \text{ (see below)}$	[1]	[2]

[Total: 8]


reductant	E ^e _{cell} /V	reductant	E ^e _{cell} /V	reductant	E ^e _{cell} /V
Ag	0.27	Fe⇒Fe ²⁺	1.51	Na	3.78
Al	2.73	Fe⇒Fe ³⁺	1.11	Ni	1.32
Ba	3.97	Fe ²⁺	0.30	Pb	1.20
Ca	3.94	H ₂	1.07	SO ₂	0.90
Со	1.35	I_	0.53	$S_2O_3^{2-}$	0.98
$Cr \Rightarrow Cr^{2+}$	1.98	K	3.99	Sn	1.21
$Cr \Rightarrow Cr^{3+}$	1.81	Li	4.11	Sn²⁺	0.92
Cr ²⁺	1.48	Mg	3.45	V	2.27
Cu⇒Cu⁺	0.55	Mn	2.25	V ²⁺	1.33
Cu⇒Cu²+	0.73	NO ₂	0.26	V ³⁺	0.73
Cu⁺	0.92	HNO ₂	0.13	VO ²⁺	0.07
		NH_4^+	0.20	Zn	1.83

List of acceptable reductants with resulting E^{e}_{cell} values

e.g. for Sn^{2^+} : $\operatorname{Sn}^{2^+} + \operatorname{Br}_2 \longrightarrow \operatorname{Sn}^{4^+} + 2\operatorname{Br}^-$ [1] $E^{\circ} = 1.07 - 0.15 = \mathbf{0.92} \vee$ [1] (or similarly for other suitable reagents)

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE A/AS LEVEL – May/June 2009	9701	04	
3	(a)		k) element forming stable ions/compounds/oxidation s filled [NOT empty] d-orbitals	tates with incomp	olete/ [1]	[1]
	(b)	(i) (1s ²	$2s^2 2p^6$) $3s^2 3p^6 3d^3 4s^2$		[1]	
		(ii) (1s ²	2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁹		[1]	[2]
	(c)	(+)2, (+)	3, (+)4, (+)5 or II, III, IV, V		[1]	[1]
	(d)	(pale blu	le solution \Rightarrow) blue/cyan solid/ppt .(<i>or</i> (s) in the formu	la)	[1]	
		(blue pp	t. is) Cu(OH) ₂ or copper hydroxide		[1]	
		(then pro	oduces a) deep blue or purple solution		[1]	
		which co	ontains $[Cu(NH_3)_4]^{2+}$ or $[Cu(NH_3)_4(H_2O)_2]^{2+}$		[1]	
		formed b	by ligand replacement		[1]	[5]
	(e)	or 2VC correct s balancin	•		[1] [1]	[2]
					[Total:	11]
4	(a)	(i) hom	ogeneous		[1]	
		• •	in 2 and 3 are oppositely charged ions (thus attract ea in 1 are similarly charged ions (thus repel each other)		[1]	

(iii)

	Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	,
		GCE A/AS LEVEL – May/June 2009	9701	04	
	e.g.	$_{3}$ produces acid rain <i>or</i> SO ₃ + H ₂ O \longrightarrow H ₂ SO ₄ <i>or</i> lower pH of lakes; leaches aluminium from soils; kills t dissolves/corrodes/damages buildings (NOT global wa DT asthma etc – since this is not environmental)	fish/plants/rainfo		n,
	• •	burning of fossil fuels/coal/oil/petrol/gas/diesel/fuel o bhide ores <i>or</i> cement manufacture <i>or</i> volcanoes	or car exhausts	<i>or</i> roastin [1]	g of
	(iii) SO ₂	$_2$ + NO ₂ \longrightarrow SO ₃ + NO		[1]	
	NO	+ $\frac{1}{2}O_2 \longrightarrow NO_2$		[1]	[4]
				[Tota	l: 9]
5	(a) CH ₃ CH ₂	$CH_2CH_2CH_2OH$ $CH_3CH_2CH_2CH(OH)CH_3$ C A B	CH₃CH₂CH(OH)C C	CH ₂ CH ₃	
	all three (2 only =	(any order) = [1])	-	[2]	[2]
	(b) B above	e (may be different letter) ([0] if more than one compo	und stated)	[1]	[1]
	(c) (i) Ba	bove (may be different letter) ([0] if more than one co	mpound stated)	[1]	
	(ii) (pa	le) yellow ppt.		[1]	
	(iii) CH	I ₃ + CH ₃ CH ₂ CH ₂ CO ₂ Na <i>or</i> anion (no credit for the acid	, RCO₂H)	[1] + [1]	[4]
	(d) A ——	$\rightarrow CH_3CH_2CH_2CO_2H$		[1]	
	В ——	\rightarrow CH ₃ CH ₂ CH ₂ COCH ₃		[1]	
	c	\rightarrow CH ₃ CH ₂ COCH ₂ CH ₃ (letters may differ)		[1]	[3]

	age 6		Paper 04
		GCE A/AS LEVEL – May/June 2009 9701	04
(e)	(i)	$(C_6H_{10}O_5)_n \longrightarrow 5n H_2 + 5n CO + n C$ correct species and the 5:5:1 ratio	o [1]
		(allow n5 instead of 5n) balancing, i.e. multiplying by n	[1]
	(ii)	$\Delta H = 7(1080) + 15(436) - 6(350) - 16(410) - 14(460)$ = -1000 kJ mol ⁻¹	
			ГА 1
		4 correct values from DB (in bold italics above) correct multipliers	[1] [1]
		correct signs and arithmetic	[1]
		(correct answer = [3])	
		Some ecf values for [2] marks (i.e. 1 error): for [1] mark (i.e. 2 errors): +1000 (signs reversed)	
		-1350 (7 x (C-C) instead of 6) +1350	
		+2220 (7 x O-H instead of 14) –2220 -1410 (17 C-H instead of 16) +1410	
		The omission of a type of bond (C-C is the most common one that is omitte	d) for
		2 marks, in addition to any other errors there may be.	
		Г	Total:
(a)	(i)	I: SOC l_2 or PC l_5 or HC l + ZnC l_2 or PC l_3 + heat or C l_2 + P + heat [NOT NaC l + H ₂ SO ₄]	[4]
		(mention of aq negates mark)	[1]
			141
		II: NH ₃ (ignore any conditions stated)	[1]
	(ii)	nucleophilic substitution or S_N or S_N1 or S_N2	[1]
	(iii)	delocalisation of lone pair on Cl over benzene ring produces a stronger $C-Cl$ bond	[1]
(b)	(i)	III: $HNO_3 + H_2SO_4$	[1]
		both conc., and at T < 60°C	[1]
		IV: Sn + conc HC l [NOT LiA l H ₄ or H ₂ + Ni]	[1]
	(ii)	III: electrophilic substitution	[1]
		IV: reduction or redox	[1]
		TV. reduction of redox	
(c)	e.g.	add bromine water or $Br_2(aq)$ (a solvent is needed for the mark)	[1]
(c)	e.g.		

Page 7	Mark Scheme: Tead	chers' version	Syllabus	Paper
	GCE A/AS LEVEL –	May/June 2009	9701	04
(d)			CH ₃	
	$ \underbrace{\bigcirc}_{\mathbf{N} \equiv \mathbf{N}} \underbrace{\oplus}_{\mathbf{C}l} \underbrace{\bigcirc}_{\mathbf{C}l} $	N=N-	-ОН	
	llow + charge on either N) llow double or triple bond)		CH ₃	
		(phenylazo group mu (N=N must be double	ust be at 4-position to -OH) e bond, not triple)	
	[1]	[1]		[2]
				[Total: 13]

Section B

7 (a) For each element, award [1] mark for each column in one particular line in the table below. The [2] marks awardable for each element are not conditional on each other, but don't take the location from one line and the role from another.

element	location	role
	red blood cells/haemoglobin	to bind to/carry/transfer oxygen (to cells) or CO ₂ (away from cells)
iron	muscle (cells)/myoglobin	to bind to/carry/transfer oxygen (to muscles) <i>or</i> CO ₂ (away from muscles)
	in mitochondria/cytochromes	to aid redox reactions or to help oxidise NADH etc
	in iron-sulphide proteins	to aid redox reactions
	in ferrodoxin	to aid redox reactions
sodium	in nerve cells/nerves/nervous system/neurones <i>or</i> in cell membranes/phospholipid bilayers	Na ⁺ /K ⁺ pump <i>or</i> ion pump <i>or</i> active transport <i>or</i> transmission/regulation of nerve impulses
	in kidneys	to help re-absorb glucose
	in blood ("cells" not needed, but "plasma" negates) <i>or</i> carbonic anhydrase	as an enzyme co-factor/prosthetic group <i>or</i> to help the hydration/removal of CO_2 <i>or</i> production of H_2CO_3/HCO_3^-
zinc	in the gut/carboxypeptidase	as an enzyme co-factor/prosthetic group <i>or</i> to help hydrolyse polypeptides
	in the liver/alcohol dehydrogenase	as an enzyme co-factor/prosthetic group <i>or</i> to help oxidise/break down alcohol
	[1]	+ [1] for each element [6]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

(b) (i) manufacture of NaOH or manufacture of batteries or manufacture of felt or gold extraction

or (mercury) fungicides or (mercury) compounds used in timber preservation [1]

 (ii) In each case below, a balanced equation is worth [2] marks breaks disulphide bonds/linkages or Hg bonds to S-H groups (or in an unbalanced equation)

 $\begin{array}{rl} -\mathsf{CH}_2\text{-}\mathsf{S}\text{-}\mathsf{S}\text{-}\mathsf{CH}_2\text{-} & + \ 4\mathsf{Hg}^+ \rightarrow 2 \ -\mathsf{CH}_2\text{-}\mathsf{S}\text{-}\mathsf{Hg} \ + \ 2\mathsf{Hg}^{2+} \\ or \ \mathsf{R}\text{-}\mathsf{S}\text{-}\mathsf{S}\text{-}\mathsf{R} \ + \ 4\mathsf{Hg}^+ \rightarrow 2 \ \mathsf{R}\text{-}\mathsf{S}\text{-}\mathsf{Hg} \ + \ 2\mathsf{Hg}^{2+} \ or \ \ \mathsf{R}\text{-}\mathsf{S}\text{-}\mathsf{R} \ + \ \mathsf{Hg}^+ \rightarrow 2 \ \mathsf{R}\text{-}\mathsf{S}\text{-}\mathsf{Hg}^+ \\ or \ \mathsf{R}\text{-}\mathsf{S}\mathsf{H} \ + \ \mathsf{Hg}^+ \rightarrow \mathsf{R}\text{-}\mathsf{S}\mathsf{Hg} \ + \ \mathsf{H}^+ \ or \ \ \mathsf{R}\text{-}\mathsf{S}\mathsf{H} \ + \ \mathsf{Hg}^{2+} \rightarrow \ \mathsf{R}\text{-}\mathsf{S}\text{-}\mathsf{Hg}^+ \ + \ \mathsf{H}^+ \\ or \ 2 \ \mathsf{R}\text{-}\mathsf{S}\mathsf{H} \ + \ \mathsf{Hg}^{2+} \rightarrow (\mathsf{R}\text{-}\mathsf{S})_2\mathsf{Hg} \ + \ 2 \ \mathsf{H}^+ \ \mathsf{etc} \end{array} \tag{[1]}$

bonds to carboxyl side chains (in amino acids) (or in an unbalanced equation) [1]

$$-CO_2H + Hg^+ \rightarrow -CO_2Hg + H^+ \text{ or } 2 RCO_2H + Hg^{2+} \rightarrow (RCO_2)_2Hg + 2H^+ [1]$$

[5]

[11 max 10]

[1]

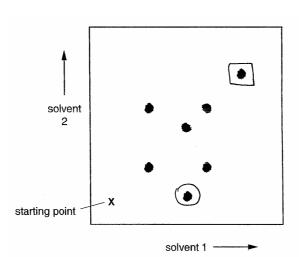
[1]

- 8 (a) (i) Partition coefficient (PC) is an equilibrium constant representing the distribution of a solute between two solvents.
 or PC = ratio of the concentrations of the solute in the two solvents or PC = [X]_a/[X]_b
 [1]
 - (ii) If 0.4 g has been extracted, 0.1 g remain in the aqueous layer.

the concentration in the hexane layer = $\frac{0.4}{20}$ = 0.02 g cm⁻³

the concentration in the aqueous layer = $\frac{0.1}{100}$ = 0.001 g cm⁻³

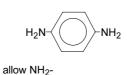
$$K_{\rm pc} = 0.02/0.001 = 20$$
 [1]


(iii) 1^{st} extraction: hexane x/10 g cm⁻³ water (0.50-x)/100 g cm⁻³ $K_{pc} = \frac{x/10}{(0.5 - x)/100} = 20$ hence x/10 = (10 - 20x)/100 100x = 10(10 - 20x) or 100x = 100 - 200xx = 0.33 g

 $2^{nd} extraction: hexane y/10 g cm^{-3} water (0.17 - y)/100 g cm^{-3}$ $K_{pc} = \frac{y/10}{(0.17 - y)/100} = 20$ hence y/10 = (3.4 - 20y)/100 100y = 10(3.4 - 20y) or 100y = 34 - 200y y = 0.11 g

total extracted = 0.44 g, or difference = 0.04 g or 10% more (is extracted) [1] (correct answer = [3]) [5]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper	•
	GCE A/AS LEVEL – May/June 2009	9701	04	
	berries are aqueous media PCBs are insoluble/sparingly soluble in water <i>or</i> more fat	-soluble	[1] [1]	
(ii)	partition coefficient <i>or</i> [fat]/[water] is greater than 1		[1]	[3]


- (c) (i) 4 (four)
 - (ii)

correct spot circled	[1]
correct spot squared	[1]
[in each case, more than one spot circled or squared negates the mark]	[3]

[1]

9 (a) (i) correct diagram showing at least one monomer unit, and at least one N-H and C=O. i.e. -NH-C₆H₂-NH-CO- or -CO-C₆H₄-CO-NH-(no mark for this, but apply a penalty of -[1] if candidate's diagram does NOT show these points correctly) one H-bond between N-H of original chain and C=O group of new chain [1] one H-bond between C=O of original chain and N-H group of new chain [1] (ii) hydrogen bonds or H-bonds (in words; can be written on diagram) (ignore ref to v d W) [1] (iii) HO₂C CO₂H or CIOC COCI [1] allow HO₂C-HOOCallow CICO-

HOCO-

[5]

[1]

Page 10		Mark Scheme: Teachers' version	Syllabus	Paper		
		GCE A/AS LEVEL – May/June 2009	9701	04		
	 [1] [NOT insoluble <i>or</i> does not dissolve in water, also NOT "non-polar"] (ii) Fluorine-containing groups form van der Waals bonds (with the oil molecules) [1] 					
	bu	it cannot form hydrogen bonds (with the water molecul	es)	[1]		
(iii)	Teflo	on/PTFE		[1]		
					[4]	
[Total: 9]						