MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/32 Paper 32 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	32

Question 1

Supervisor's Report

Calculate, correct to 2 d.p., the titre if the Supervisor had diluted 42.75 cm^3 of **FB 2**.

This is given by the expression

 $\frac{42.75}{\text{volume diluted}} \times \text{titre}$

Candidate scripts

Calculate the scaled titre for 42.75 cm^3 of **FB 2**. Record the scaled value against the titration table and calculate the difference to Supervisor.

Q	uestion	Sections	Indicative material	Mark	
1	(a)	PDO Layout	(i) Tabulates initial and final burette readings and volume added in each of the tables.	1	
			Do not award this mark if any final and initial burette readings are inverted or 50 is used as the initial burette reading.		
		PDO Recording	(ii) <u>Both</u> burette readings in the dilution table and <u>final</u> <u>and initial</u> burette readings for all accurate titres in the titration table recorded to the nearest 0.05 cm ³ .	1	
		MMO Collection	 (iii) Follows instructions: dilutes 42.50 cm³ to 43.00 cm³ and has <u>any</u> two titres, which may include a rough titre, within 0.20 cm³ 	1	
		MMO Decisions	 (iv) Has at least two titres within 0.1 cm³. Do not include any titre labelled "rough"/"trial" unless the candidate has ticked that value or used it in an expression when calculating the average in (b). 	1	
			 (v) and (vi) Accuracy Give (v) and (vi) if difference to Supervisor is 0.3 or less Give (vi) only for a difference of 0.3+ to 0.5 	2	
			Give neither for a difference greater than 0.5		[6]

Page 3			Mark Scheme: Teachers' version	Syllabus		Paper
			GCE A/AS LEVEL – May/June 2009	9701	9701 32	
(b)	ACE Inter	pretation	Working must be shown in this section or the selected titres ticked in the titration table. Candidate selects/calculates appropriate "averation any titre values within 0.20 cm ³ . Candidate is permitted to use a titre labelled "rot" "trial". Where all titres are given to 1 decimal place the should be calculated correct to 1 or 2 decimal places average should be calculated to 2 decimal places average should be calculated to 2 decimal place rounded to the nearest 0.05 cm ³ .	ne age" from ough" or e average blaces. , the es or	1	[1]
(c)	ACE Inter PDC Disp	pretation	(i), (ii) and (iii) Check each step of the calculation. Award three marks if all steps are chemically co- ignore evaluation errors. Withhold 1 mark for each chemical error – no n marks. (Count non-completed steps as chemical step 1 $\frac{\text{titre}}{1000} \times 0.023$ step 2 5 e ⁻ in 1 st eqn; 2 e ⁻ in 2 nd eqn step 3 × <u>candidate's ratio</u> from step 2 The expected ratio is $\frac{5}{2}$ step 4 × $\frac{1000}{25}$ step 5 × $\frac{250}{\text{volume diluted}}$ [or (10 × step 3) × $\frac{1000}{\text{volume diluted}}$ step 6 × 126 (iv) Working shown in at least three of steps 1 (v) Answers to 3 or 4 significant figures in finato to each step attempted from steps 1 & 3–6 (minimum of three steps required).	egative al errors.) ted	3 1 1	[5]
	1		1		[T _+	
					LIO	ai: 12]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	32

Question 2 Round all thermometer readings to the nearest 0.5 °C

Supervisor's Report

Calculate $\Delta T/m$ correct to 2 d.p. for each experiment.

Candidate's scripts

Calculate $\Delta T/m$ correct to 2 d.p. for each experiment.

Record values of $\Delta T/m$ on script and use in assessing accuracy marks.

Where a candidate has performed one or both of the experiments a number of times (as distinct from adding in portions and recording the increasing temperature on each addition):

Calculate (unrounded) the $\Delta T/m$ value for each experiment, then

Take the average of the closest pair, rounded to 2 d.p.

Question	Sections	Indicative material	Mark	
2 (a)	PDO Layout	 Tabulates or lists all experimental readings: mass of tube + FB 4 mass of tube + residue mass, m₁, of FB 4 initial temperature final temperature ΔT 	1	[1]
(b)	MMO Quality	Calculate the difference between the Supervisor and candidate values of $\Delta T/m$. Give two marks for a difference up to 0.1 °C g ⁻¹ Give one of these two marks for a difference of +0.1 °C g ⁻¹ to 0.3 °C g ⁻¹ .	2	[1]
(c)		No mark		
(d)	ACE Interpretation	Calculates (0.15 × 84) or has 12.6 g NaHCO ₃	1	[1]
(e)	ACE Interpretation	Gives the maximum error as <u>1.0</u> °C. Do not award this mark for an answer of 1.	1	[1]
(f)	ACE Interpretation	Calculates $\frac{\text{candidates answer to (e)}}{1.50}$ × 100% correct to: 2 significant figures (67%) or 3 significant figures (66.7%) or 4 significant figures (66.67%) Accept $66^2/_3$.	1	[1]
(g)	MMO Decisions	Selects a mass between 8.0 and < mass of NaHCO ₃ calculated in (d). (<i>If the candidate's answer to</i> (d) <i>is < 8.0 g; the mass</i> <i>selected should be in the range:</i> ² / ₃ × mass in (d) and < mass in (d)) and estimates (mass × 1.5) correctly If no mass has been calculated/given in (d), this mark cannot be awarded.	1	[1]

Page 5			Mark Scheme: Teachers' version	Syllabus		Paper
			GCE A/AS LEVEL – May/June 2009	9701		32
(h)	PDO		Records all weighings, <u>consistently</u> , to at least 1	decimal	1	
	recor	ding	place in (a) and (h).			
			Records all thermometer readings to (.0) or (.5)	in (a) and	1	
			(h).			
			Where the experiment in (h) has not been attem	pted, only		
			the mark for consistent weighings may be award	led – from		
			the experimental results in (a) .			101
(1)						[2]
(1)) 	Where mass of (empty) test-tube and mass o	f test-	1	
	Colle	ction	tube + FB 5 are given:			
			mass added to the test-tube should be ± 0.2 g from test should be a should be ± 0.2 g from test should be a should be	om mass		
			selected in (g).			
			If no mass of (empty) test-tube is recorded, b	out mass		
			of test-tube + FB 5 and mass of test-tube + re	esidual		
			FB 5 are recorded:			
			mass of FB 5 used in the experiment should be	in the		
			range $(+0.2 \text{ to } -0.5)$ g of mass selected in (g).			
			Calculate the difference between 1 30 and the		2	
			candidate's value of AT/m		2	
			Give two marks for a difference up to 0.2 °C a^{-1}			
			Give and of these two marks for a difference of	f		
			Sive one of these two marks for a difference of $\pm 0.2 \text{ °C } a^{-1}$ to $0.4 \text{ °C } a^{-1}$	1		
			10.2 C g 100.4 C g			[3]
(k)	ACE		Manipulates Hess cycle to show that		1	
()	Conc	lusions	$\Delta H_0 = \Delta H_4 - 2\Delta H_0 \text{ or}$		•	
	00110		$\Delta H_i = \Delta H_0 + 2\Delta H_0 \text{ or}$			
			$2\Lambda H_{2} = \Lambda H_{1} - \Lambda H_{2}$			
			$2\Delta H_2 = \Delta H_1 = \Delta H_3$		1	
	ACE	rotation	Confectly calculates a value for ΔH_3 from equality		I	
	merp	relation	A two sign must be given for any endethermic of	U).		
			The candidate must use the exact values given	in the final		
			answors to (c) and AT/m but may then correctly	round		
			their answer to at least 3 significant figures	Tound		
			their answer to at least 5 significant rightes.			[2]
(1)	ACE		Suggests additional insulation (lid etc.)		1	
(')	Impro	vement	Candidate must suggest a suitable material to u	se as	1	
	mpre	vomont	insulation or explain how or where the insulation	is to be		
			applied			
			or			
			plots cooling/heating curves, extrapolating to			
			lowest/highest temperature			[1]
	1					
	1				[Tot	tal: 15

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	32

FB 6 is NaBr; FB 7 is Na1; FB 8 is ZnSO ₄ (aq), FB 9 is MgSO ₄ (aq)3 (a)No mark(b)Reagents available:HC; NaOH(aq); NH ₃ (aq); BaCl ₂ /Ba(NO ₃) ₂ (aq); Pb(NO ₃) ₂ (aq); AgNO ₃ (aq); K ₂ Cr ₂ O ₇ (aq); Br ₂ (aq); concentrated H ₂ SO ₄ MMO Decisions(i)Selects AgNO ₃ as one reagent and NH ₃ (aq) added to the ppt produced with AgNO ₃ or Pb(NO ₃) ₂ / K ₂ Cr ₂ O ₇ added as fresh reagents. The reagent must be named or the formula of the reagent given.1MMO Collection(ii) Correct observations for an appropriate pair of reagents for FB 6 (iii) Correct observations for an appropriate pair of reagents for FB 71Expected observations:FB 6 (Br ⁻)FB 7 (I ⁻) yellow ppt (off-white ppt is NOT acceptable)FB 7 (I ⁻) yellow ppt yellow ppt (brow ppt (brow ppt insoluble partially soluble Pb(NO ₃) ₂ white ppt yellow ppt K ₂ Cr ₂ O ₇ no change brown solutionOne of the observations and propriate pair of row pot insoluble partially soluble Pb(NO ₃) ₂ white ppt yellow ppt K ₂ Cr ₂ O ₇ no change brown solutionOne of the observation marks can be awarded for correct observations on adding AgNO ₃ to FB 6 and FB 7 if this is to the candidate's advantace.	Question	Sections	Indicative materialMarkir;FB 7 is NaI;FB 8 is ZnSO4(aq), FB 9 is MgSO4(aq)No markilable:HCl; NaOH(aq); NH3(aq); BaCl2/Ba(NO3)2(aq); Pb(NO3)2(aq);Cr2O7(aq);Br2(aq); concentrated H2SO4(i)Selects AgNO3 as one reagent and NH3(aq) added to the ppt produced with AgNO3 or Pb(NO3)2 / K2Cr2O7 added as fresh reagents. The reagent must be named or the formula of the reagent given.(ii)Correct observations for an appropriate pair of reagents for FB 6(iii)Correct observations for an appropriate pair of reagents for FB 7Expected observations: $\overline{FB 6 (Br^{-}) FB 7 (I^{-})}$ acceptable)AgNO3 reacentable)NH3(aq)ppt insoluble or ppt insoluble partially soluble or brown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.(iv) Makes appropriate consequential conclusions from observations given						
3 (a) No mark (b) Reagents available:HCl, NaOH(aq); NH ₃ (aq); BaCl ₂ /Ba(NO ₃) ₂ (aq); Pb(NO ₃) ₂ (aq); AgNO ₃ (aq); K ₂ Cr ₂ O ₇ (aq); Br ₂ (aq); concentrated H ₂ SO ₄ MMO Decisions (i) Selects AgNO ₃ as one reagent and NH ₃ (aq) added to the ppt produced with AgNO ₃ or Pb(NO ₃) ₂ / K ₂ Cr ₂ O ₇ added as fresh reagents. The reagent must be named or the formula of the reagent given. 1 MMO Collection (ii) Correct observations for an appropriate pair of reagents for FB 6 1 (iii) Correct observations for an appropriate pair of reagents for FB 7 1 Expected observations: The reagent ppt (off-white ppt is NOT acceptable) 1 MH ₃ (aq) ppt insoluble or partially soluble ppt insoluble partially soluble Pb(NO ₃) ₂ white ppt yellow ppt K ₂ Cr ₂ O ₇ no change One of the observation marks can be awarded for correct observations on adding AgNO ₃ to FB 6 and FB 7 if this is to the candidate's advantage.		FB 6 is NaB	Br; FB 7 is NaI;	FB 8 is ZnSO ₄ (aq), FB 9 is Mo	gSO₄(aq)			
(b) Reagents available:HCl; NaOH(aq); NH ₃ (aq); BaCl ₂ /Ba(NO ₃) ₂ (aq); Pb(NO ₃) ₂ (aq); AgNO ₃ (aq); K ₂ Cr ₂ O ₇ (aq); Br ₂ (aq); concentrated H ₂ SO ₄ 1 MMO (i) Selects AgNO ₃ as one reagent and NH ₃ (aq) added to 1 Decisions (ii) Selects AgNO ₃ as one reagent and NH ₃ (aq) added to 1 Or Pb(NO ₃) ₂ / K ₂ Cr ₂ O ₇ added as fresh reagents. 1 The reagent must be named or the formula of the reagent given. 1 MMO (ii) Correct observations for an appropriate pair of reagents for FB 6 1 (iii) Correct observations for an appropriate pair of reagents for FB 7 1 Expected observations: Expected observations: 1 MH ₃ (aq) ppt insoluble or ppt insoluble partially soluble ppt insoluble NH ₃ (aq) ppt insoluble or or hor ppt insoluble 1 Pb(NO ₃) ₂ white ppt yellow ppt 1 K ₂ Cr ₂ O ₇ no change brown solution One of the observation marks can be awarded for correct observations on adding AgNO ₃ to FB 6 and FB 7 if this is to the candidate's advantace.	3 (a)		No mark						
MMO Decisions(i)Selects AgNO3 as one reagent and NH3(aq) added to the ppt produced with AqNO3 or Pb(NO3)2 / K2Cr2O7 added as fresh reagents. The reagent must be named or the formula of the reagent given.1MMO Collection(ii)Correct observations for an appropriate pair of reagents for FB 61(iii)Correct observations for an appropriate pair of reagents for FB 71Expected observations:FB 6 (Br)FB 7 (I^)AgNO3 (off-white ppt is NOT acceptable)FB 7 (I^)AgNO3 (off-white ppt is soluble partially soluble Pb(NO3)2 white ppt K2Cr2O7 Nor hange brown solution0One of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.	(b)	Reagents avai	ilable:HC <i>l</i> ; NaOH Cr ₂ O ₇ (ag): Br ₂ (ag)	l(aq); NH ₃ (aq); B	aC <i>l</i> ₂ /Ba(NO ₃) ₂ (a	ıq); Pb(NO	₃) ₂ (aq);		
MMO Collection(ii) Correct observations for an appropriate pair of reagents for FB 61(iii) Correct observations for an appropriate pair of reagents for FB 71(iiii) Correct observations for an appropriate pair of 		MMO Decisions	(i) Selects AgNO <u>the ppt produ</u> or Pb(NO ₃) ₂ / K ₂	able . If Ct , NaOf (aq), NH3(aq), Bac t_2 /Ba(NO3) ₂ (aq), Pb(NO3) ₂ (aq), $r_2O_7(aq)$; $Br_2(aq)$; concentrated H_2SO_4) Selects AgNO3 as one reagent and NH3(aq) added to the ppt produced with AqNO3 or Pb(NO3) ₂ / K ₂ Cr ₂ O ₇ added as fresh reagents.The reagent must be named or the formula of the reagent given. i) Correct observations for an appropriate pair of reagents for FB 6 iii) Correct observations for an appropriate pair of reagents for FB 7 Expected observations:FB 6 (Br ⁻) FB 7 (U ⁻)					
MMO Collection(ii) Correct observations for an appropriate pair of reagents for FB 61(iii) Correct observations for an appropriate pair of reagents for FB 71 $Expected observations:$ 1 $Expected observations:$ 1 $AgNO_3$ $Cream ppt$ (off-white ppt is NOT acceptable) $NH_3(aq)$ ppt insoluble or partially soluble $NH_3(aq)$ ppt insoluble or partially soluble $Pb(NO_3)_2$ white ppt brown solutionOne of the observation marks can be awarded for correct observations on adding AgNO ₃ to FB 6 and FB 7 if this is to the candidate's advantage.			The reagent i reagent i	must be named o n.	or the formula of	the			
(iii) Correct observations for an appropriate pair of reagents for FB 71Expected observations: \hline FB 6 (Br^-)FB 7 (I^-)AgNO3cream ppt (off-white ppt is NOT acceptable)NH3(aq)ppt insoluble or 		MMO Collection	(ii) Correct observerse (iii) Correct observerse (iii) reagents for I	rvations for an ap F B 6	opropriate pair o	f	1		
Expected observations: $FB 6 (Br^-)$ FB 7 (I^-)AgNO3cream pptyellow ppt(off-white ppt is NOT acceptable)not acceptable)NH3(aq)ppt insoluble or partially solubleppt insolublePb(NO3)2white pptyellow pptK2Cr2O7no changebrown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.			(iii) Correct observed reagents for I	rvations for an ap F B 7	opropriate pair o	f	1		
FB 6 (Br ⁻)FB 7 (1 ⁻)AgNO3cream pptyellow ppt(off-white ppt is NOT acceptable)yellow pptNH3(aq)ppt insoluble or partially solubleppt insolublePb(NO3)2white pptyellow pptK2Cr2O7no changebrown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is 			Expected obs	servations:					
AgNO3cream ppt (off-white ppt is NOT acceptable)yellow ppt $NH_3(aq)$ ppt insoluble or partially solubleppt insoluble $Pb(NO_3)_2$ white ppt Vellow pptyellow ppt $K_2Cr_2O_7$ no changebrown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.				FB 6 (<i>Br</i> ⁻)	FB 7 (<i>I</i> ⁻)				
$NH_3(aq)$ ppt insoluble or partially solubleppt insoluble $Pb(NO_3)_2$ white pptyellow ppt $K_2Cr_2O_7$ no changebrown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.			AgNO ₃ (off-	cream ppt white ppt is NOT acceptable)	yellow ppt				
$Pb(NO_3)_2$ white pptyellow ppt $K_2Cr_2O_7$ no changebrown solutionOne of the observation marks can be awarded for correct observations on adding AgNO3 to FB 6 and FB 7 if this is to the candidate's advantage.			NH ₃ (aq) pj pa	ot insoluble or artially soluble	ppt insoluble				
$K_2Cr_2O_7$ no change brown solution One of the observation marks can be awarded for correct observations on adding AgNO ₃ to FB 6 and FB 7 if this is to the candidate's advantage.			$Pb(NO_3)_2$	white ppt	yellow ppt				
ACE (iv) Makes appropriate consequential conclusions from observations given 1 Conclusion (iv) Makes appropriate consequential conclusions from observations given 1 (FB 6 contains Br ⁻ and FB 7 contains I ⁻ but Cl ⁻ may be given from white ppt with Ag ⁺ . 1 Allow Br ⁻ from off-white ppt insoluble or partially soluble in ammonia 1		ACE Conclusion	 N₂Cr₂O₇ One of the observations on a to the candidate's (iv) Makes appropriate observations (FB 6 contain be given from Allow Br⁻ from soluble in am 	vation marks car adding AgNO ₃ to s advantage. priate <u>consequer</u> given as Br [–] and FB 7 co a white ppt with A n off-white ppt in monia	brown solution FB 6 and FB 7 <u>htial</u> conclusions contains I [−] but C Ng ⁺ . soluble or partia	r correct if this is from l [−] may lly	1		

Page 7		Mar	k Scheme: Teache	Syllabu	S	Paper		
		GCE	GCE A/AS LEVEL – May/June 2009					32
(c)		look	for the following ma	rkina r	ooints.			
(0)		LOOK		ining				
			FB 6		FB 7			
		(i)	yellow/orange/red	(i)	brown/grey/black			
			liquid or mixture		solid			
			(not colour alone)		or			
			or		purple gas/vapour			
			das or vapour		awarded in either			
					of the first two			
		(ii)	white or steamy	(;;)	boxes)	-		
		(1)	fumes	(11)	(smell of) H ₂ S			
			(in either of the		or			
			first two boxes)		test for H ₂ S			
					dichromate			
					turning green)	_		
		(111)	SO ₂	(111)	Orange/dark			
					brown solution			
					(no solid) on			
					water			
		(iv)	no change (but not	(iv)	blue/blue-black/			
			no ppt) with starch		purple/purple-			
					(of solution or			
					solid)			
	14140	Cive	one mark for two o	ut of f	our correct markin	a nointo		
	Collectic	for FE	B 6			y points	1	
	Concourt	Give	one mark for three	out of	four correct mark	ing points	1	
		for FE	3 7					
(d)		Obso	n/06:				1	[2]
(u)	Collectio	on vellov	v/orange/red/brown	colour	∙ on adding Br₂(ag).	1	
		provid	ding there is no prec	ipitate	or solid	,,		
		and	, .,					
		blue/l	olue-black/purple/pu	rple-b	lack/black colour (of		
		301011						[1]
(e)	ACE	Conc	lusions for halide/	sulfur	ic acid reaction			
	Conclus	ions Any r	eference to Br_2 or I_2	being	produced or halio	le	1	
			ed ric acid is an ovidicir		ont		1	
		H ₂ SC	D_4 oxidises halide sco	ores b	oth marks.			
		-2			-			
		Conc	lusions for bromin	e wat	er/iodide reactio	n	1	
			ving both of the halo	placer dens/h	nent or redox read	uon		
		e.g. (i) halogen/halide	Brom	ine oxidises iodide	e ions.		
		(i	i) halogen/halogen	Br ₂ di	splaces I ₂ .			
		<u>_</u> .		lodine	e is displaced by b	oromine.		
		Ihere	e is no suitable state	ment	inking halide and	nalide.		[3]

Page 8		Mar	Mark Scheme: Teachers' version Syllabus		
		GCE	A/AS LEVEL – May/June 2009	9701	32
(f)	MMO Collection	FB 8 FB 9	Observes white ppt soluble/dissolving/disappearing (in excess each reagent. Observes white ppt insoluble/not dissolving/remaining (in exc each reagent	es) for cess) for	1
	ACE Conclusion	Mark precip Expect Symb or the <i>e.g. Z</i>	consequentially on observations involving vitates only. Sted ions are Zn ²⁺ in FB 8 and Mg ²⁺ in FB 9 Fol and ion charge must be correct in any name of the ion given: n ²⁺ or zinc but not Zn	white deduction	1
		1			[Total: 13]