MARK SCHEME for the May/June 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

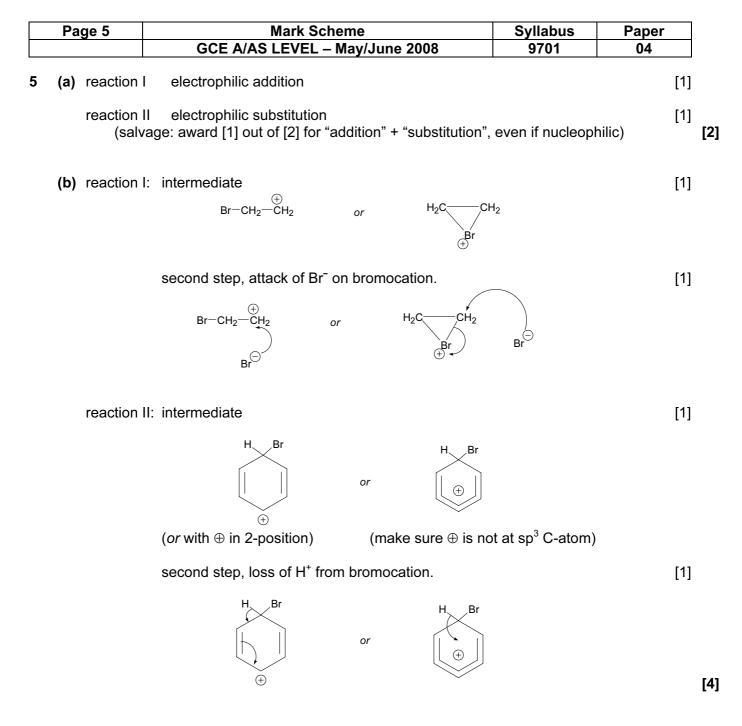
• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2				Mark Scheme	Syllabus	Paper	
		Ŭ		GCE A/AS LEVEL – May/June 2008	9701	04	
	(a) (i)		A is	Cl ₂ /chlorine		[1]	
			B is	NaC <i>l or</i> HC <i>l or</i> C <i>l</i> [−] [or words], etc.		[1]	
			C is	salt bridge or KC1/KNO ₃ , etc.		[1]	
			D is	platinum/Pt		[1]	
			E is	Fe ²⁺ + Fe ³⁺ or mixture of Fe(II) + Fe(III) salts		[1]	
				tion of standard conditions ([Cl^{-}] of 1 mol dm ⁻³ or Cl_2 a = 25°C/298 K)	at 1 atmos	[1]	
		(ii)	E ^e =	$E_{R}^{e} - E_{L}^{e} = 0.77 - 1.36 = (-)0.59$ (V) (ignore sign)		[1]	
				e R.H. electrode is negative) electrons flow (from ri trode <i>or</i> anticlockwise <i>or</i> from (beaker) E to (beaker) B		to the chlorine [1]	
	(b)	(i)		= 3 ×(–167.2) + (–48.5) – (–399.5) = –150.6 or 151 (kJ mol ^{–1}) rect ans [2])		[1] [1]	
		(ii)		$^{3^{+}}$ + Cu \longrightarrow 2Fe ²⁺ + Cu ²⁺ nolecular: 2FeC l_3 + Cu \longrightarrow 2FeC l_2 + CuC l_2)		[1]	
				0.77 − 0.34 = (+) 0.43 (V) mark for −0.43V)		[1]	
						[Total: 12 max	: 1
	(a)	(i)		= 4 × 278 – 244 – 2 × 496 = –124 (kJ mol ^{–1}) rect ans [2])		[1] [1]	
		(ii)	due (ass	be is bent/V-shaped/non-linear (<i>or</i> diagram) to (one) lone pair <i>and/or</i> (1) odd/unpaired electron (<i>or</i> s ume electrons are on chlorine unless explicitly stat rd no mark)		[1] [1] in which case	

(iii)
$$3KClO_3 + H_2SO_4 \longrightarrow K_2SO_4 + KClO_4 + H_2O + 2ClO_2$$
 [1] [5]

- - (ii) causes acid rain [1] which lower pH of lakes; leaches aluminium from soils; kills fish/plants/rainforests; dissolves/corrodes/damages buildings (any 1) [1] (NOT asthma etc – since this is not environmental) [3]


Page 3				Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9701	04	
	Si Sr		SiO ₂ SnO	: simple + molecular/covalent <i>or</i> weak intermolecular for 2: giant/macro + molecular/covalent 9 ₂ : ionic/electrovalent (ignore "giant") prrect = [1], 1 correct = [0])		ll 3 correct) [2]	
		(ii)		P_2 is stable, PbO ₂ is not <i>or</i> SnO ₂ is the more stable $P_2 \longrightarrow PbO + \frac{1}{2}O_2$		[1] [1]	
		(iii)		+ CO_2 (\rightleftharpoons) H ⁺ + HCO ₃ ⁻ [H ⁺][HCO ₃ ⁻]/[H ₂ O][CO ₂] or = [H ⁺][HCO ₃ ⁻]/[CO ₂]		[1] ecf [1]	
				$D_3^- + H^+ \longrightarrow H_2CO_3 \text{ or } H_2O + CO_2 \text{ (or equation with H})$ $D_3^- + OH^- \longrightarrow CO_3^{2^-} + H_2O \text{ (NB NOT } H_2CO_3 + OH^ CO_3^{2^-} + OH^-)$		[1] [1]	
			•	rds can substitute for one of the equations but not criptions are given, in the absence of at least one corre)		ward [1] mark	[8]
					I	[Total: 16 max [·]	15]
3	(a)			ral diagram (either dashed+wedge, or similar representa all) 109° – 110°	tion)	[1] [1]	
				D] for part (a) if an angle of 90° or 180° is mentioned)			[2]
	(b)	(allo due	ow b.µ e to gr	decreases <i>or</i> boiling points increase pt. CC¼ > SiC¼ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces <i>or</i> due to mo of "ions" negates this mark)	re electrons	[1] [1]	[2]
	(c)	(i)	a va (hen Pb ⁴⁺	F/Pb^{2+} : $E^{\circ} = +1.69V$, Sn^{4+}/Sn^{2+} : $E^{\circ} = +0.15V$, lid comment about relative redox power <i>or</i> stability, e.g.: ace) Sn^{2+} easily oxidised <i>or</i> Sn^{4+} is more stable than Sn^{2+} is easily reduced <i>or</i> Pb^{2+} is more stable than Pb^{4+} <i>or</i> oxidation state more stable down the group	or	[both] [1] [1]	
		(ii)	Pb ⁴⁺	$ I + I_2 \longrightarrow Sn^{4+} + 2I^{-} $ $ I + SO_2 + 2H_2O \longrightarrow 4H^{+} + SO_4^{2-} + Pb^{2+} $ B. no marks in (ii) for E^{e} values)		[1] [1]	[4]
	(d)	(i)	for S	Si: ∆H = 244 – 2(359) = –474 (kJ mol ^{–1}) Sn: ∆H = 244 – 2(315) = –386 (kJ mol ^{–1}) w [1] out of [2] salvage mark for 474 & 386; 962 & 874; o	or –962 & –874	[1] [1] ŀ)	
		(ii)		: the +4 state becomes decreasingly stable – the ΔH is leaving the the the the the the teach is for relating ΔH s to stability: allow ecf from d(i) and a			[3]
						[Total: [/]	111
						•	-

Pa	age 4				Scheme		Syllab		Paper	
			GCE	A/AS LEV	EL – May/J	June 2008	9701		04	
4 (a)	este	er							[1]	[1]
(b)	read	ction I	heat/reflu "dil" mean	x and aque	ous (allow OT H ₂ SO ₄)	/NaOH (followed ' H₃O⁺ to equal also allow aque arm")	H ⁺ + aq, als	o assi	[1] ume "conc" <i>or</i> [1]	•
	read	ction I	: methanol/ heat with		0 ₄ /H ₃ PO ₄ or	-HC <i>l</i> (g) [NOT c	onc HC <i>l</i>]		[1] [1]	[4]
(c)	(i)	BrCH	2-CHBr-CH2	Br					[1]	
	(ii)	HO ₂ C	C-CO-CO ₂ H						[1]	[2]
(d)	∴ 5 (cor	00kg rect a	iglyceride pr produces 50 ns [2]))5kg <i>or</i> 167k	0 × 894/890) = 502 kg b				[1] ecf [1]	
(e)	• •		₃₅ CO ₂ CH ₃ + ₁₉ H ₃₈ O ₂)	27.5 O ₂	\rightarrow 19CO ₂	+ 19H ₂ O			[1]	
	. ,	(–1 fc	44 × 19/298 or each error e ecf values:	r) n = 18 ⇒ 1	26.6kg 25.1kg (allo	ow [2] for each)		eo	cf from equ [2]	[3]
(f)	•	(sav eco exp ref war	ensive as it	hing resourd ment (NOT runs out e (e.g. no a smaller c	just "chea net increa	aper") – e.g. oi se in CO ₂ , i.e. tprint")				

- renewable/sustainable
- the effect of biofuel cultivation on world food prices

[1] **[1]**

[Total: 13]

(c) Delocalised ring of electrons (in benzene) is stable, (so is re-formed in second step in benzene.)
or electrons in the other σ bend are localised/more available for reaction with electrophiles.

or electrons in the ethene π bond are localised/more available for reaction with electrophiles

[1] [1]

[Total: 7]

Page 6	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May	/June 2008	9701	04
	CH ₃	ÇO₂H		
	$\left[\left(\begin{array}{c} \\ \end{array}\right)\right]$			

ÇO₂H

D

NO₂

Вr

ÇO₂H

Ε

NH₂

В

5 x [1]

[deduct [1] mark if ring circle omitted more than once] [allow ecf for **E** from structure of **D**] [allow ecf for **B** from structure of **A**] [allow $-CO_2^-$ for **E**]

Br

Α

CO₂H

С

[5]

```
[Total: 5]
```

7

polymer	addition/condensation?	formulae of monomers				
1	condensation	HO ₂ C-CO ₂ H or C <i>l</i> CO-COC <i>l</i>				
		NH ₂ -CH ₂ -CH ₂ -NH ₂				
		HO-CH₂-CH(C₂H₅)-CO₂H				
2	condensation	HO-CH ₂ -CH(CH ₃)-CO ₂ H				
		CH ₂ =CH-CH ₃				
3	addition	$CH_2=CH-CONH_2$ $CH_2=CH-C_6H_5$				
	<u>^</u>					
	[2]	[6]				
	(2 correct: [1])	(6 correct: [5])				
etc						

(2 correct: [1])

(C=C bonds not needed, but penalise –[1] if C-C drawn instead of C=C) (if more than 7 formulae drawn, then penalise –[1] for each formula in excess of 7)

[8]

[Total: 8]

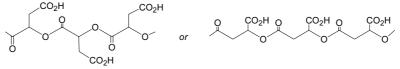
F	Page 7		Mark Scheme Syllabus	Paper
			GCE A/AS LEVEL – May/June 2008 9701	04
(a	a) prim	nary:	covalent (ignore amide, peptide etc) diagram showing peptide bond: (-CHR-)CONH(-CHR-)	[1] [1]
	seco	ondary:	hydrogen bonds (NOT "between side chains") diagram showing N-H···O = C	[1] [1]
	terti	ary:	 two of the following: hydrogen bonds (diag. must show H-bonds other than those β-pleated sheet – e.g. ser-ser) electrostatic/ionic attraction, van der Waals'/hydrophobic forces/bonds, (covalent) disulphide (links/bridges) suitable diagram of one of the above (for disulphide: S-S not S=S or SH-SH) 	in α-helix <i>or</i> [1] + [1] [1]
/L	·			
(r	any or n	possib not), and	-ala-gly-arg-val-lys ole sequence with more than 8 residues, that "uses" all 6 tripeptides I that starts with <i>met</i> and ends with <i>lys</i> is worth [1] mark ace that does not start with <i>met</i> or end with <i>lys</i> gets zero.	[2] (overlapping
	any or n any c) CAF can by a thes	RE – this didates amino ac	ble sequence with more than 8 residues, that "uses" all 6 tripeptides I that starts with <i>met</i> and ends with <i>lys</i> is worth [1] mark ace that does not start with <i>met</i> or end with <i>lys</i> gets zero. Is is not about DNA! Should describe TWO potential effects on tertiary or quaternary struct cid sidechains	(overlapping
	any or n any c) CAF can by a thes (only	possib not), and sequen RE – this didates amino ac se includ ly allow e n award a descr (award a descr unfoldir inactivit	 all e sequence with more than 8 residues, that "uses" all 6 tripeptides of that starts with <i>met</i> and ends with <i>lys</i> is worth [1] mark face that does not start with <i>met</i> or end with <i>lys</i> gets zero. as is not about DNA! as should describe TWO potential effects on tertiary or quaternary struct cid sidechains de: disruption of H-bonding disruption of disulphide bridges disruption of electrostatic/ionic attraction disruption of van der Waals' forces 	(overlapping tures caused 2 x [1]

	age 8					Paper
			GCE A/AS LEVE	L – May/June 2008	9701	04
) (a)	(i)+	m (c vo (salv	ny two of: olecular mass/size/ <i>M</i> _r /sha overall electrical) charge (o oltage/size/P.D. (of applied rage: if just "mass & charg rd [1])	on the species) d electric field)	n no reference to spec	[1] + [1] cies or molecule,
(b)	(i)	a sin	COCH ₃ would show gle peak/no splitting since peak at δ = 2.1 due to CH		same chemical envir	onment [1]
		envii <i>or</i> th	CH ₂ CHO would show 3 ronments ere would be a peak at δ : peak at δ = 0.9 due to CH	= 9.5 – 10.0 due to th		different proton
			peak at $\delta = 0.0$ due to CH ₂	13		[1]
		•	sons needed for the mark propanone will have one p	-	-	
	(ii)	diffe	rent fragments:			
		• C	H ₃ COCH ₃ would form few	ver fragments (must l	pe stated in words)	
		• C	H ₃ COCH ₃ would form a fr	agment of CH_3CO^+ o	or at (m/e) 43	
		• C	H ₃ CH ₂ CHO would form a	fragment of CH ₃ CH ₂	⁺ <i>or</i> CHO⁺ at (m/e) 29	
		• C	H ₃ CH ₂ CHO would form a	fragment of CH ₃ CH ₂	CO⁺ <i>or</i> at (m/e) 57	
		[cha	rges on fragments not req	uired for mark]		any 3 points [3]
(c)	(i)	peak	s at (m/e) 79 and 81 <i>or</i> a	t (m/e) 94 and 96		[1]
	(ii)		lorine the M and M+2 pea reas in bromine they are a			[1] [1]
						[']

Page 9	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	04

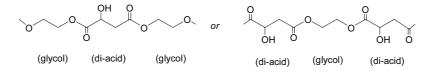
10 (a) any two of the following:

- to speed delivery (of drug to target organ), i.e. faster response
- to avoid the drug being hydrolysed/reacted/decomposed (NOT digested) in the stomach
- to allow a smaller dose to be used or greater accuracy of dosage
- patient does not have to be conscious
- (b) (i) spheres with a diameter of the order of nanometres/in the nanometre range/between 10 & 500 nm [1]
 - (ii) it is (highly) acidic *or* low pH *or* contains HC*l* (NOT contains enzymes) [1]
 - (iii) use hydrogels: of different (wall) thickness/strength (to release drug over time) of different chemical composition (for different breakdown times) incorporating pores/holes (in their walls)
 (any two) [1] + [1]

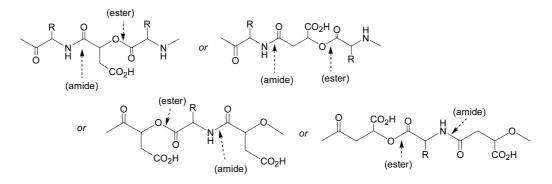

[4]

2 × [1] [2]

(c) for the homopolymer, either using the amino acid the minimum is:


-CO-CHR-NH-CO-CHR-NH-

or using the hydroxyacid the minimum is:



(-[1] for each error) [2]

for the **heteropolymer**, *either* using the glycol compound and the di-acid the minimum is:

or using the amino acid and the di-acid, the minimum is:

(A heteropolymer incorporating all three monomers can also be drawn. This should include an ester linkage between the glycol and one of the CO_2H groups, and an amide linkage between the aminoacid and another CO_2H group. Deduct [1] mark from the whole of section (c) if complete compounds are shown rather than sections of chains. Allow 4-monomer sections instead of 3. Allow [2] marks for a polymer section even if **one** end is incomplete (e.g. is lacking an oxygen atom), but if **both** ends are incomplete deduct [1]) (-[1] for each error) [2] [4]

[Total: 10 max 9]