UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	В	Е		
Component 4	60	45	40	22		

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Paper 4 (Structured Questions A2 Core)

er
[1]
[1]
[1] [1]
[1]
[1]
[1]
[7]
[1]
[1]
[2]
[9]
d in
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

Deduct	ions in (i) or	(ii)	E.C.F. deductions in (iii)		
[Propanone]	[CN ⁻]	[H ⁺]	Mechanism	Slow step	
1 1 0		0	В	1 st	
1	0) 1 A		1 st	
1	1	1	A or B	2 nd	
Any other			No e.c.f. mark can be awarded		

Part (b): [6]

Page 2	Mark Scheme	Syllabus	Paper
	A LEVEL – JUNE 2005	9701	4

3 (a) (i) It is an endothermic reaction, or taking in heat [1]

It has a high activation energy/E_a [1]

(ii) MgCO₃ will decompose at a **lower** temperature/needs less energy [1]

Mg²⁺ is a smaller (ion) than Ca²⁺ **or** Mg²⁺ has high charge density [1]

So polarises/distorts the anion CO_3^{2-} ion more easily [or LE(MgO) > LE(CaO)] [1]

Part (a): [5]

(b)
$$\Delta H = 82 - 178 = -96 \text{ (kJ mol}^{-1})$$
 [1]

Part (b): [1]

(c)
$$[CaMg(CO_3)_2 \longrightarrow CaO + MgO + 2CO_2]$$

 $M_r(CaMg(CO_3)_2) = 40.1 + 24.3 + 24 + 96 = 184.4$ [1]

 $M_r(2CO_2) = 2 \times 44 = 88$

∴% loss in mass =
$$100 \times \frac{88}{184.4} = 47.7\%$$
 (e.c.f. in 184.4) [1]

Allow 48%. Also allow 48.8% if $M_r = 184$

Part (c): [2]

Total: [8]

Page 3	Mark Scheme	Syllabus	Paper
	A LEVEL – JUNE 2005	9701	4

- 4 (a) (i) $1s^22s^22p^63s^23p^63d^64s^2$ or [Ar] $3d^64s^2$ [1]
 - (ii) Coloured compounds/ions/solutions/ppts; paramagnetic; variable oxidation state/valency/more than one ion; dense metals; high melting point metals; are catalysts; form complexes (ANY 2) [1] + [1]

Part (a): [3]

(b) (i) $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$ [1]

 $E^{\circ} = 1.52 - 0.77 = 0.75 \text{V}$ (allow e.c.f. 0.90V for MnO₂ [1]

(ii) MnO₄ is purple/highly coloured [1]

End point is **first** (permanent) pink colour **or** colourless-to-pink (Allow yellow-to-pink but **not** purple-to-pink) [1]

Part (b): [4]

(c) Water molecules are ligands, in that they coordinate/form dative bonds (to the Fe ion) with their (lone) pairs of electrons or lone pairs are donated. [1]

A complex ion is an ion/Fe $^{3+}$ surrounded by/joined to ligands or [Fe(H $_2$ O) $_6$] $^{3+}$ [1]

Part (c): [2]

- (d) (i) Haemoglobin transports oxygen in the **blood or** from **lungs** (to tissues) [1]
 - (ii) CO forms stronger bonds to Hb/Fe²⁺ than does O₂ **or** CO has higher affinity **or** bonds irreversibly **or** forms more stable complex [1]

Part (d): [2]

(e) Reagent: $I_2 + OH^-$

Observations - ethanol: yellow **ppt**./antiseptic smell; methanol: no change [1]

Part (e): [2]

Total: [13]

Р	age 4			Mark Scher				Syllabus	Paper
				A LEVEL – JUN	E 20	05		9701	4
5	(a)		$K_a = [RC]$	$CO_2^{-}][H^{\dagger}]/[RCO_2H]$]				[1]
								Part	: (a): [1]
	(b)	(i)	The mor	re chlorine atoms	in t	he mol	ecule, the stror	nger the acid	, [1]
			either orwea orfaci orcau the right	conditional on re	ion, conc n um l	or spred in the	eading (-) charg acid, or incre I ⇌ RCO ₂ + H ⁺	ge more, asing ionisa to lie furthei	
		(ii)	[H ⁺] = √((0.1 x 1.4 x 10 ⁻³)	=	0.011	8 (mol dm ⁻³) alle	ow 0.012	[1]
		()		/ -log ₁₀ (0.0118)	=		Allow 1.9 or 1		[1]
		(iii)	•	$\log_{10}(5.5 \times 10^{-2})$	=		Allow 1.3		[1]
		()	pr-a	910(-1-1-7				Part	(b): [6]
	(c)	(i)	Ch(an)	A l C l_3 or UV nega	ates			· u··	[1]
	(0)		` -/	_					
		(ii)	Electrop	hilic substitution	or a	iddition	n-elimination		[1]
				hilic substitution r mark is awarde tion x2				•	oup [1]
		(iii)	or: or: or: or:	add Br ₂ (aq) add FeC l ₃ (aq) add NaOH(aq) add UI solution add "diazonium case, A give no	pho pho pho "to s pho	enol givenol disenol go enol go solution enol giv	ve a purple colo ssolves pes yellow/oran	our ge (A stays	
			or: or: or: or:	add $\text{Cr}_2\text{O}_7^{2-}/\text{H}^+/\text{V}_9$ add $\text{MnO}_4^-/\text{H}^+/\text{W}_9$ add $\text{PC}_{15}/\text{POC}_{15}$ add $\text{CH}_3\text{CO}_2\text{H}^-$	/arm ₃/ <i>PC</i>	n A ch S <i>l</i> ₃ /SOC	nanges from pu $\mathcal{C}l_2$ A gi	rple to colouves fumes	ırless
			(in each	case, no change	e wit	h phen	ol)		
					•	Test +	reagents [1] Bo	oth observat	tions [1]
								Part	: (c): [5]
								To	tal: [12]

Page 5			Mark Scheme	Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
6	(a)	(i)	Electrophilic substitution or nitration		[1]
		(ii)	$HNO_3 + H_2SO_4$		[1]
			(both) conc., and at 50°C ≤ T ≤ 60°C		[1]
		(iii)	NO_2^+		[1]
			H NO ₂ etc. or		
			⊕ Any ⊕ on NO₂ or H negates		[1]
			H⁺		[1]
				Par	t (a): [6]
	(b)	(i)	Reduction		[1]
		(ii)	Sn/Fe/Zn/SnC l_2 + HC l /H $^+$ /H $_2$ SO $_4$ (but not conc. H $_2$ S or H $_2$ + Ni/Pt (not LiA l H $_4$)	SO ₄)	[1]
				Part	: (b): [2]
	(c)		PC1 ₅ /PC1 ₃ /SOC1 ₂ /POC1 ₃ (+ heat) aq nega	tes	[1]
				Par	t (c): [1]
	(d)	(i)	An amide, not peptide		[1]
		(ii)	Heat with H ₃ O ⁺ or heat with OH⁻(aq)		
			Or warm (not heat/reflux) with aqueous amidase/p enzyme/trypsin/chymotrysin/pepsin/papain etc.	eptidase/pro	otease not [1]
				Part	: (d): [2]
				То	tal: [11]