

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

BIOLOGY

9700/05

Paper 5 Planning, Analysis and Evaluation SPECIMEN MARK SCHEME For Examination from 2016

1 hour 15 minutes

MAXIMUM MARK: 30

This document consists of 6 printed pages.

[Turn over

Mark scheme abbreviations:

- ; separates marking points
- *I* alternative answers for the same point
- R do not allow
- A allow (for answers correctly cued by the question, or guidance for examiners)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants excepted)
- max maximum number of marks that can be given
- ora or reverse argument

Numbers against mark points are for examiner reference only; they do not reflect relative importance of answers or a required sequence of answers.

Question			Expected answer	Extra guidance	Mark	
1	(a)	(i)	<i>independent variable</i> – quantity / percentage of <i>Fucus spiralis</i> ; <i>dependent variable</i> – numbers of <i>Littorina littorea</i> / mollusc;	A seaweed / algae R 'number of <i>Fucus spiralis</i> '	[2]	
		(ii)	ref. to using the same size quadrat / using the same quadrat; ref. to line / transect parallel to sea; ref. to repeat lines / transects at same distance from the sea; ref. to systematic counting / quadrats at fixed intervals along the transect;	Ignore in all cases reference to means / climate / same beach / weather. ignore ref. to repeating the investigation or repeating the measurements A descriptions e.g. every metre intervals	[max 2]	
		(iii)	any two of: light (intensity); temperature; humidity / rainfall; wind / air movement;	ignore weather / climate / tide	[max 1]	
	(b)	(i)	answers must relate to specific data in the table samples at 6 / 7 / 15 all have similar percentage of <i>Fucus</i> and have molluscs present; percentage of <i>Fucus</i> is high so should have molluscs; does not fit a general correlation / does not follow trend ;	 A sample at 16 without any <i>Fucus</i> cover has molluscs; A all the others have some molluscs 	[max 1]	
		(ii)	<i>x</i> -axis – <u>mean percentage</u> of <i>Fucus spiralis</i> ; <i>y</i> -axis – <u>mean number</u> of <i>Littorina littorea</i> ;	 A % sign A mean quantity / amount of seaweed / algae A mean number molluscs 	[2]	
		(iii)	ref. to no relationship (because data is scattered); ref. to there is a slight / partial (positive) correlation;	A described pattern e.g. as steps / increases unevenly or increase in <i>Fucus</i> does not mean an increase in <i>Littorina</i>	[max 1]	
	(c)	(i)	the data is not normally distributed; data points are independent of each other; the data can be converted to ordinal data;	A data is ordinal / ordered	[max 1]	
		(ii)	$D = 9 \text{ and } D^2 = 81;$		[1]	
		(iii)	correct substitution of values; correct subtraction to give r_s ;	$(r_s) = 1 - \left(\frac{6 \times 787 / (4722)}{8000 - 20 / 7980}\right)$		
				= 1 - 0.6 = 0.4 A 1 - 0.59(2)	[2]	

www.theallpapers.com

ω

Question	Expected answer	Extra guidance	Mark	
(iv)	there is a weak positive correlation between the distribution of the two species;		[1]	
(d)	abiotic factor any one of: temperature; idea of exposure; light availability; presence of rocks / rock pools; distance from sea; pollution;	allow heat / cold; e.g. desiccation / drying out / wave action		
	<i>biotic factor any one of:</i> predation; competition other species for food source; human activities AW;	allow named predators e.g. dog whelk / sea birds e.g. trampling / collecting for food / litter	[max 2] [Total: 16]	

4

Question		Expected answer	Extra guidance	Mark	
2	(a)	 <i>independent variable:</i> ref. to using same mass of tissue to homogenise; ref to using same volume of osmotic buffer to make suspensions; same volume of each suspension added to each of the test-tubes; 			
		 dependent variable: 4. ref. to checking regular intervals until blue disappears; 5. ref. to colour comparison / control without methylene blue added; 	A equilibrate at same temperature as suspensions		
		 control variables: (max 2) 6. ref. to adding known volume methylene blue solution; 7. ref. to equilibrating methylene blue at 20 °C before using; 8. ref. to a method of keeping the temperature constant; 	8. e.g. water-bath / incubator. A temperature controlled room. Ignore air conditioning		
		 procedure: 9. ref. to inverting / stirring to mix indicator with extract; 10. ref. to a method of excluding air after adding methylene blue; 	10. e.g. adding oil to surface / filling tubes and closing with a cork. A injecting methylene blue through an oil laver / sealed tube		
		11. ref. to a low risk experiment;	11. A ref. to possible toxicity of methylene blue and suitable precaution e.g. wearing gloves		
		<i>reliability:</i> 12. ref. to 10 replicates for each suspension;		[max 8]	

© UCLES 2014

www.theallpapers.com

S

Question

Expected answer

(b) (i) any two of:

		time for methylene blue to become colourless s ⁻¹											
		test 1	test 2	test 3	test 4	test 5	test 6	test 7	test 8	test 9	test 10		
	Tissue A	70	56	59	54	52	56	55	75	59	50		
	Tissue B	124	126	136	126	122	125	121	123	124	125		
	both for one mark;										[1]		
(ii)	<i>idea of</i> di	fficulty	in jud	ging tł	ne disa	appear	ance o	of the o	colour;				[1]
(iii)	add all the values together excluding anomalous results and divide by the total number of samples; A as formula ∑ sample values – anomalous results number of samples								A as formula ∑ sample values – anomalous results number of samples	[4]			
(iv)	 use an oxygen probe to measure the fall in oxygen concentration over time; use a carbon dioxide probe to measure the increase in carbon dioxide; use of pH meter to decrease in pH due to hydrogen ions; 										[1]		
(c)	any two of: tissue A takes less time than tissue B to reduce methylene blue / rate of reaction of tissue A is faster than tissue B ; time for tissue A to reduce methylene blue / rate of reaction of A is 2.25 times faster than tissue B ; tissue A has faster rate of respiration than tissue B ; results from tissue B are more reliable than those of tissue A ora;								/ rate s 2.25	A stated time –69s less for A ora A stated rate 10 s^{-1} more for A ora A standard deviation of tissue B is less than that of tissue B ora	[max 2]		
													[10tal: 14]

_

www.theallpapers.com

Mark

6