UNIT 2 Molecules and Membranes

Timing This unit comprises approximately 20% of the learning material in AS Biology, and about 10% of the learning material in a complete Biology A Level learning programme.

Recommended Prior Knowledge Students will need some background knowledge in chemistry before embarking on this Unit. They should understand the terms 'atom', 'molecule' 'electron' and 'ion'. They should also have a basic understanding of covalent and ionic bonding, and of molecular and structural formulae. They should be able to write and understand simple chemical equations. Some knowledge of energy changes (potential energy and bond energy) would be helpful. They should understand the kinetic theory, and be able to use it to explain diffusion in solutions.

Context This Unit could be studied either before or after Unit 1, Cells and Cell Division. It provides essential material that students will constantly refer to when studying all future Units in their AS course. An understanding of the structure, roles and behaviour of biological molecules is fundamental to an understanding of all physiological processes, as well as genetics and some aspects of ecology.

Outline The Unit begins with the properties and roles of water in relation to living organisms; this introduces the concepts of hydrogen bonding and solubility, which will be needed in order to understand the properties of biological molecules. Three of the main groups of biological molecules - carbohydrates, fats and proteins - are studied, with an emphasis on relating their molecular structures to their properties and functions in living organisms. This leads on to an understanding of the structure and functions of biological membranes.

There are good opportunities within this Unit for students to develop their practical skills relating to Assessment Objectives in Group C (Experimental skills and investigations) including the design and evaluation of their own investigations. Try to ensure that each student works alone and under time pressure on some occasions, as this will help to prepare for the practical examination(s).

Note: the structure and function of polynucleotides (DNA and RNA) is covered in a later Unit.

Reinforcement and formative assessment It is recommended that, towards the end of the time allocated to the unit, time be taken to permit reinforcement of the learning that has occurred. This might take the form of structured revision and questions, perhaps making use of online question banks such as http://www.learncie.org.uk/ or http://exam.net/public/misc/pub_home.asp.

Formative assessment could take the form of student self-marked minitests, taking just 10 or 15 minutes for students to do and then mark for themselves, perhaps using questions from the banks above – discussing the correct answers as a whole class. At the end of the unit, there should be a much larger formative assessment test, using appropriate past-examination and similar style questions, taking a lesson to do, and a lesson to provide feedback after marking by the teacher.

Learning Outo	omes Suggested Teaching Activities	Online Resources	Other resources
	Before beginning this Unit, it is	http://old.jccc.net/~pdecell	Advanced Biology, Jones
	recommended that you check the	/chemistry/chemtext.html	and Jones, CUP, has an
	background knowledge of students, as	is an excellent online basic	Appendix covering the
	described in 'Recommended Prior	chemistry tutorial designed	basic chemistry required
	Knowledge' at the beginning of this	for biologists	for this Unit.
	Unit.		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(i)	describe and explain the roles of	The way in which you deal with this	http://people.pwf.cam.ac.u	The properties of water are
	water in living organisms and as an	topic should be tailored to the	k/mjas2/Documents/BYB_	fully described and
	environment for organisms	background of your students. Those	Water.pdf has information	explained in <i>Biological</i>
		with a strong chemistry background are	about the range of	Sciences, ed Soper, CUP
	Learning Activities	likely to have little trouble with	functions of water in a text	and in <i>Advanced Biology</i> ,
	 question and answer session / 	understanding the concepts involved,	document	Jones and Jones, CUP.
	whole class discussion	while others may find this very difficult		
	 looking up key terms in the index 	and will need a slow and steady	http://www.farmweb.au.co	Biology, Jones. Fosbery,
	of a variety of Biology books	approach that keeps things as simple as	m/h2o/h2life.html	Taylor and Gregory, gives
	brief written and diagrammatic	possible.	has an interesting series of	a briefer treatment of this
	explanation of polar/non-polar		articles and other	topic.
	and hydrogen bonding and its	It is a good idea to make cross-	extension materials	
	importance	references to other areas of biology,	suitable for interested	Biofactsheet 30: The
		such as cell biology, during this section	students	biological importance of
		so that students gain a wide perspective		water
		on the roles of the biochemicals they		
		study in this Section/Unit.		Biofactsheet 78: Chemical
				bonding in biological
		You should aim to give students a		molecules
		sound but simple description of		
		hydrogen bonding, and use this to		
		explain why water has a relatively high		
		boiling point, high specific heat		
		capacity, high surface tension and high		
		latent heat of vaporisation. Its solvent		
		properties should also be discussed - this will help to explain the solubility or		
		otherwise of the biological molecules to		
		be dealt with later in this Unit. Each of		
		these properties can be related to the		
		roles of water within living organisms		
		and as an environment for them.		
		and as an environment for them.		

A discussion on hydrogen bonding could be extended to highlight its important in protein structure and DNA.	
Emphasise role of water as important solvent in biological systems - introduce concept of 'polar' and 'non-polar' here.	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out tests for reducing and non-	I would suggest carrying out these tests	http://jchemed.chem.wisc.	Practical Advanced
	reducing sugars (including semi-	on solutions of different sugars first to	edu/JCESoft/CCA/CCA5/	Biology, King and Reiss,
	quantitative use of the Benedict's	identify reducing and non-reducing	MAIN/1ORGANIC/ORG1	describes these techniques
	test)	sugars. I would not call them 'food	8/TRAM18/B/MENU.HT	(though not the semi-
		tests'.	<u>M</u>	quantitative tests).
	Learning activities	Students could first carry out the	has illustrations of simple	
	– use Benedict's test on water, pure	Benedict's test for reducing sugars on a	benedict's test, including	Comprehensive Practical
	glucose, fructose, maltose,	range of food substances; this will be	negative test for sucrose	<i>Biology</i> , includes a
	lactose, sucrose, protein	revision for most of them. You could	before hydrolysis.	protocol that describes a
	solutions, starch suspension, and	then explain to them that this test does		semi-quantitative test.
	vegetable oil	not work for sucrose (the only non-	http://www.mrothery.co.u	See also Biological
	use Benedict's test on a range of	reducing sugar they will come across)	k/module1/Mod%201%20t	Science, ed Soper, pub.
	natural biological materials (e.g.	and ask them to suggest how they	echniques.htm	CUP.
	fruits, tubers)	might be able to adapt the test to test	gives a straightforward	
	- use Benedict's test on water, and	for sucrose - encourage them to draw	description of benedict's	Advanced Biology
	on solutions containing sucrose,	on their knowledge of glycosidic bonds	test for reducing and non-	principles and
		- before carrying out this test on a	reducing sugars.	applications. Study Guide
	before and after hydrolysis in hot acid and neutralisation	sucrose solution. Recommend using		Clegg and Mackean, and
		AR sucrose, not LR or cane sugar.	http://www.mrothery.co.u	Biology, Jones, Fosbery,
	- describe the tests made and the	You could then set them the task of	k/bio_web_prac/practicals/	Taylor and Gregory,
	results obtained	determining which of three solutions	2Food%20Tests.doc	also describes suitable
	use qualitative Benedict's	contain glucose only, sucrose only and	has clear protocols	ways of carrying out these
	solution in a semi-quantitative	a mixture of both sugars. It is well	_	tests.
	way to determine the	worth giving them the opportunity to	http://www.biotopics.co.u	
	approximate concentration of	work this out for themselves.	k/as/cho.html	
	glucose in some solutions by	Practical work should also include	protocol including tests for	
	colour or by mass of precipitate	determining the approximate	reducing and non reducing	
		concentration of an unknown glucose	sugars, and some points to	
		solution. Students will first need to	ponder - maybe a useful	
		carry out the Benedict's test (controlling	starting point.	
		all variables) on a range of solutions of		
		known concentration, and then compare		

	the depth of colour or the mass of	
	precipitate obtained when testing the	
	unknown.	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
(d)	describe the molecular structure of	Build on the students' understanding of	http://chemed.chem.purdu	Most AS and A level
	starch (amylose and amylopectin),	hydrogen bonding, covered in B(i), to	e.edu/genchem/topicrevie	textbooks cover this
	glycogen and cellulose and relate	explain how these molecules are held in	w/bp/1biochem/carbo5.ht	material thoroughly.
	these structures to their functions in	shape.	<u>ml</u>	
	living organisms	Explain advantage of branching of	has a comprehensive	Biofactsheet 39:
		amylopectin in providing large number	review of carbohydrate	Carbohydrates: revision
	Learning activities	of 'ends' to attach and detach glucose	structure and function,	summary
	 get students to handle strings of 	units	useful as a source of	
	beads on wire or to join hands		extension materials	Biology, Jones, Fosbery,
	and pretend to be 'long, strong			Taylor and Gregory, like
	chains of β glucose residues'		http://www.calfnotes.com/	other texts, uses diagrams
	(cellulose), 'compact, energetic		pdffiles/CN102.pdf	to relate these structures to
			material on the structure	their functions
	spirals of α glucose residues'		and function of these	
	(amylose), and 'compact,		polysaccharides in the	
	branched, amorphous, energetic		context of calf nutrition.	
	shapes of α glucose residues'			
	(amylopectin and glycogen) – the			
	concrete experiences help to			
	learn a difficult abstract idea			
	 make brief written and 			
	diagrammatic explanations of the			
	relationship between structure			
	and function			

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(e)	describe the molecular structure of a triglyceride and a phospholipid and relate these structures to their functions in living organisms Learning activities - make very simple paper cut out models of triglycerides to illustrate the non-polar exposed fatty acids, and phospholipids to show the very different ends of the molecule. - the cut out phospholipids can be laid out side by side to form a bilayer (keep the paper models for use in D(a)) - examine diagrams of triglycerides, describing evidence that makes them good energy stores (lots of carbon-carbon bonds, highly reduced so energy can be released by oxidation, insoluble in water so can be localised in the organism)	The insolubility of triglycerides, and the behaviour of phospholipids when in contact with watery liquids, should be related to the absence or presence of polar groups; once again, you should refer back to the earlier work on water to help to explain this. It is suggested that you do not go into any detail about saturated and unsaturated fatty acids. You may like to describe the formation of bilayers by phospholipids at this stage, or to deal with this later, in topic D(a). Students should be able to describe a range of functions of lipids in organisms, relating each of these functions to their molecular structure.	http://ntri.tamuk.edu/cell/lipid.html has a nice illustrated review, useful as a source of material	Biofactsheet 42: The structure and function of lipids Biofactsheet 74: The structure and biological functions of lipids Biology, Jones, Fosbery, Taylor and Gregory, like other texts, uses diagrams to relate these structures to their functions

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out the emulsion test for lipids	Students may already know this test	http://www.mrothery.co.u	Practical Advanced
		from earlier work. They can now use it	k/bio_web_prac/practicals/	Biology, King and Reiss,
	Learning activities	to investigate the occurrence of lipids in	2Food%20Tests.doc	and Comprehensive
	use the ethanol emulsion test	a selection of fruits and seeds.	has clear protocols	Practical Biology Siddiqui
	with vegetable oil and yellow-		including this one.	and <i>Biology</i> , Jones,
	dyed water			Fosbery, Taylor and
	use the ethanol emulsion test			Gregory include suitable
	with crushed fruits and seeds			tests.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
(g) ac (h) of me stricter stricter in stricter ex of file stricter in stricter ex of stricter in stricter ex of stricter in stricter ex of stricter in stricter in stricter ex of stricter in stricter	Learning Outcomes escribe the structure of an amino and the formation and breakage a peptide bond; explain the eaning of the terms primary ructure, secondary structure, rtiary structure and quaternary ructure of proteins and describe e types of bonding (hydrogen, nic, disulphide and hydrophobic teractions) that hold the molecule shape; describe the molecular ructure of haemoglobin as an sample of a globular protein, and collagen as an example of a brous protein and relate these ructures to their functions earning activities examine diagrams of typical amino acid and simple amino acids, to identify the R group and the part common to them all, as well as the amine group and carboxylic acid group draw simple diagrams of the structure of a typical amino acid, and to show condensation and hydrolysis of peptide bonds	Suggested Teaching Activities Students do not need to know the structures of different amino acids, but they do need to understand that the R (residual) group can take many different forms. There is no need to go into any detail at all about how individual amino acids behave in solution; the behaviour of terminal amine and carboxyl groups in a protein molecule is of little importance compared with the behaviour of the R groups. You could teach the various levels of protein structure with reference to haemoglobin. Its globular shape and solubility (which can be related to the positions of polar R groups on the outside of the coiled molecule) are typical of metabolically active proteins. The structure and function of collagen can be contrasted with this. Note: students often think that to have quaternary structure proteins must be composed of 4 polypeptides.	http://www.bbc.co.uk/education/asguru/biology/02biologicalmolecules/01proteins/index.shtml The BBC AS Guru website has interactive animations of the formation and breakage of peptide bonds.	The molecular structure and functions of haemoglobin and collagen are thoroughly covered in Biology, Jones, Fosbery, Taylor and Gregory. If you wanted to take this work further, the use of paper chromatography to analyse the amino acids in albumen is described in Practical Advanced Biology, King et al, and in Comprehensive Practical Biology, Siddiqui. Advanced Biology principles and applications. Study Guide Clegg and Mackean also describes a method for analysing amino acids using chromatography Biofactsheet 80: Structure and biological functions of proteins.

and the role of bonding in		
determining shape and stability.		
 individual students or pairs to 		
make an A4 poster showing the		
role of one kind of bonding in		
one level of protein structure, so		
that the whole group covers all		
types of bonding and all levels of		
structure		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(a)	carry out the biuret test for proteins	Students are likely to have come across	http://www.mrothery.co.u	Advanced Biology
		this test already, from earlier work.	k/bio_web_prac/practicals/	principles and
	Learning activities	They need this learning reinforced, and	2Food%20Tests.doc	applications. Study Guide
	 Use the biuret test on a solution 	they need any confusions corrected.	has clear protocols	Clegg and Mackean
	of egg white, skimmed milk,		including this one.	has a flow chart to show
	chicken or tofu and water			how the different tests,
	emenen er tera and water			such as the biuret test, can
				be used to identify
				unknown substances or
				substances in a mixture.
				Practical Advanced
				<i>Biology</i> , King and Reiss,
				and Comprehensive
				Practical Biology Siddiqui
				and Biology, Jones,
				Fosbery, Taylor and
				Gregory include suitable
				protocols for this test.