MARK SCHEME for the October/November 2012 series

9700 BIOLOGY

9700/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	23

Mark scheme abbreviations:

; / R	separates marking points alternative answers for the same point reject
A AW	accept (for answers correctly cued by the question, or by extra guidance) alternative wording (where responses vary more than usual)
underline	actual word given must be used by candidate (grammatical variants excepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument
mp	marking point (with relevant number)
ecf	error carried forward
I	ignore
AVP	alternative valid point (examples given)

	Page 3	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012	9700	23
1	accept first of accept phone			
Α	name	mitochondrion ; A mitochondria		
	function (site	of); <u>ATP</u> , synthesis / production / AW <u>aerobic</u> respiration link reaction Krebs cycle oxidative phosphorylation AVP R ATP energy		
в	name	Golgi (apparatus / body / complex) ; A dictyosome A Golgi		
	<i>function</i> (site	of); modification of protein / glycosylation / describe modification of lipid pack(ag)ing (of), protein / lipids production of (Golgi / secretory) vesicles / lysos ignore synthesis of protein (<i>incorrect name</i>) <i>lysosome function</i> = contains / storage of hydro <i>Golgi / secretory, vesicles</i> = transport, protein /	omes lytic / digestive	e, enzymes
С	name	chloroplast(s) ;		
	<i>function</i> (site	of); photosynthesis light-dependent, reactions / stage (of photosynt light, absorption / AW light-independent, reactions / stage (of photosyn Calvin cycle carbon fixation photophosphorylation A ATP synthesis ignore (treat as neutral) ref. to, glucose / oxyge ignore chlorophyll R light / dark, stage / reactions	nthesis)	
D	name	<u>rough</u> endoplasmic reticulum ; R RER or rough ER R endoplastic		
	<i>function</i> (site	of); protein / polypeptide, synthesis translation modification of protein / described (e.g. folding) protein transport (to Golgi) <i>(incorrect name)</i> <i>smooth endoplasmic reticulum</i> = lipid / steroid / <i>endoplasmic reticulum</i> = <i>ecf as above for RER</i> .	•	vnthesis / AW
				[Total: 8]

© Cambridge International Examinations 2012

	Page 4			Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – October/November 2012	9700	23
2	(a)			and TB ; ny other underlined diseases		[1]
	(b)	must answer in context of antibiotics, not antibodies look for bacteria in answer if not clear in mp 1				
		 (to ensure) all <u>bacteria</u> are, killed / removed / eliminated / destroyed / AW ; R virus / bacteria and virus ignore antigen or pathogen or disease 'all' may be implied e.g. award if gain mp 2,3,4 				
		2		no reservoir of infection remains / AW / ora ;		
		3		ease) cannot be transmitted / cannot infect others / AW e		;
		4		ecurrence / disease does not return ; in context of same		
		5		educe chance of / AW, (antibiotic / drug) resistance deve ea that human becomes resistant to antibiotics	loping ;	
		6		to mutation in context of resistance ;		[max 3]
		Ŭ	101.1			[max o]
	(c)		com A sa fewe A nc A fev A pr redu A re	s with / fits into / AW, active site ; R collides with / reacts <u>plementary</u> shape to active site / similar shape to substrate ame shape as substrate / same <i>or</i> similar structure as sub- er, enzyme-substrate / E – S, <u>complexes</u> ; o ESC in context of one enzyme wer successful collisions between enzyme and substrate events formation of E – S <u>complexes</u> aces rate of / slows (enzyme) reaction ; duced enzyme activity / A less product formed	ate ; bstrate	[max 3]
		(ii)	(hun A pe peni	s that nans) do not have the enzyme for cell wall synthesis ; enicillin only inhibits bacterial enzymes cillin will not inhibit any human enzyme ; nan cells) do not have cell walls ;		[max 1]
	A inl ref. t cell lysis A ce bact stop AVP			wall synthesis will stop / slow / be inhibited ; hibit, murein / peptidoglycan, synthesis to uptake of water by osmosis ; cannot withstand osmotic stress / cell cannot withstand t / bursting / AW ; ell wall weakened eria die / are killed / destroyed ; s bacteria dividing / reproducing / 'replicating' ; ? ; e.g. detail of action of penicillin (e.g. prevents cross-lin icillin) only works on growing cells		[max 3] [Total: 11]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	23

3 (a) look at quoted data to confirm qualitative statements if unclear

1 people who never smoked have the lowest percentage of deaths (due to lung cancer); must be comparative

for age

2 either

the younger / earlier the person starts smoking the higher the percentage of deaths or

the older / later the person starts smoking the lower the percentage of deaths (due to lung cancer);

for number of cigarettes per day

3 either

increasing / AW, the number of cigarettes smoked per day increases the percentage of deaths

or

decreasing / AW, the number of cigarettes smoked per day decreases the percentage of deaths ;

different 'start' ages for the two types of smokers

- 4 highest percentage deaths is for those with an early start <u>and</u> smoke, 21–39 (cigarettes per day) / the most / AW ;
- 5 greatest difference in percentage deaths occurs in those that start smoking early ; **ora** [max 4]
- (b) (i) 1 forms carboxyhaemoglobin;
 - 2 reduces affinity of Hb for oxygen / Hb has higher affinity for CO than for oxygen ; **ignore** 'picks up CO rather than oxygen', if mp3 is given then allow
 - 3 reduces quantity of oxygen transported (in blood) / AW ; R prevents
 - damages lining of arteries ;
 A promotes / AW, atheroma / atherosclerosis / plaque [max 2]
 - (ii) raises, heart rate / blood pressure ; reduces diameter of arterioles ; decreases blood flow to body extremities ; increases 'stickiness' of platelets / promotes, blood clotting / thrombosis ; [max 2]

Page	6	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012	9700	23
(iii)	enla A be R in proc A lo	<i>let cells</i> irge / swell up ; ecome bigger / dilate flamed luce more / excess, mucus ; ts of • ; e.g. any cellular detail such as more mitochondria / G	Golgi bodies or v	esicles
	cilia.	: Ilysis / destruction ;		
	•	amages R kills <i>ignore</i> 'tar coats'		
		less beating / sweeping (action) / moving mucus ;		
	R in	context of moving air		[max 4
				Tatal: 11
				[Total: 12
aı	ward m	hax one mark if a unit (e.g. μm) is included		[2
(b) 1	thick	<pre>(ened) / lignified, walls prevent, collapse ;</pre>		
		ore strenghtened		
		ithstands, compression / negative pressure		
2		pre bursting fied (wall), prevents leakage / provides waterproofing ;		
3	•	lose, wall / lining, allows adhesion of water (molecules));	
	•	/drogen bonding / hydrophilic		
4		atively) large diameter / large cross-sectional area / wide	e / large lumen ;	
5 6		ow / empty / no contents / no cytoplasm ; end walls / continuous 'tubes' / AW ;		
7		gated ;		
		referenced to cells or vessels A cells end to end (to ma		
		[,] allow mps 4–7 in terms of ease / efficiency of water mo 4 e.g. more space allows a greater volume to flow / grea		unit time
		p 5–6 e.g. minimal resistance to flow, allows unimpede		
8	pits	/ pitted walls, to allow lateral movement ;		
	R po	ores		[max]

GCE AS/A LEVEL – October/November 2012 9700 23 (c) 1 water moves, down a water potential gradient / from a high(er) water potential to a low(er) water potential, accept ψ for water potential ; 2 apoplast pathway, described / used in correct context ; 3 symplast pathway, described / used in correct context ; 4 evaporation from mesophyll cell walls ; A surface of mesophyll cells 5 into air space(s) ; 7 must be linked to evaporation / water vapour 6 water vapour diffuses (out) ; accept if no vapour but follows from evaporation 7 out / through / via stoma(ta) ; R 'evaporates from the stomata' 8 AVP ; ref. to water leaves unlignified terminals of xylem vessels [5 (a) all points except mp3 may be taken from a labelled/annotated diagram 1 ref. to, attachment / AW, to mRNA ; 2 6 water code of resequence of amino acids (in a polypeptide) ; 4 (ribosome) provides sites for attachment of two tRNA (molecules) ; A implied 5 each tRNA has a specific amino acid / AW ; 6 (mRNA) codon – anticodon (tRNA), binding ; A description in terms of complementary base pairing A 'matching' 7 formation of peptide bonds (catalysed by peptidyl transferase) ; 7 formation of peptide bonds (catalysed by peptidyl transferase) ; <	Pag	ge 7	7	Mar	rk Scheme	Syllabus	Paper
 (c) 1 water moves, down a <u>water potential</u> gradient / from a high (er) water potential to a low(er) water potential, accept y for water potential; 2 apoplast pathway, described / used in correct context; 3 symplast pathway, described / used in correct context; 4 evaporation from <u>mescohyll cell walls</u>; A surface of mescohyll cells 5 into air space(s); must be linked to evaporation / water vapour 6 water vapour diffuses (out); accept if no vapour but follows from evaporation 7 out / through / via <u>stoma</u>(ta); R 'evaporates from the stomata' 8 AVP; ref. to water leaves unlignified terminals of xylem vessels [Tot 5 (a) all points except mp3 may be taken from a labelled/annotated diagram 1 ref. to, attachment / AW, to mRNA; 2 idea of two codon attachment, sites / space, for six bases or nucleotides; 3 mRNA has code for sequence of amino acids (in a polypeptide); 4 (ribosome) provides sites for attachment of two tRNA (molecules); A implied 5 each tRNA has a specific amino acid / AW; 6 (mRNA) codon – anticodon (tRNA), binding; A description in terms of complementary base pairing A 'matching' 7 formation of peptide bonds (catalysed by peptidyl transferase); 8 idea of ribosome moving along mRNA one codon at a time; [b) (i) GGC; (ii) CTA; (c) 1 amino acid coded by codon 2 changed; 2 idea of every subsequent <u>codon</u> changed; 3 amino acid s / protein sequence, up to and including codon 1 unaffected / AW ora amino acid s / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; 4 idea of protein non-functional; ignore 'affect / effect' 			G				23
 8 AVP ; ref. to water leaves unlignified terminals of xylem vessels [Tot (a) all points except mp3 may be taken from a labelled/annotated diagram 1 ref. to, attachment / AW, to mRNA ; 2 idea of two codon attachment, sites / space, for six bases or nucleotides ; 3 mRNA has code for sequence of amino acids (in a polypeptide) ; 4 (ribosome) provides sites for attachment of two tRNA (molecules) ; A implied 5 each tRNA has a specific amino acid / AW ; 6 (mRNA) codon – anticodon (tRNA), binding ; A description in terms of complementary base pairing A 'matching' 7 formation of peptide bonds (catalysed by peptidyl transferase) ; 8 idea of ribosome moving along mRNA one codon at a time ; (b) (i) GGC ; (ii) CTA ; (c) 1 amino acid coded by codon 2 changed ; 3 amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed ; 4 idea of premature chain termination (if stop codon further on) / AW ; 5 idea of protein non-functional ; ignore 'affect / effect' 		2 3 4 5 6	low(er) wa apoplast p symplast p evaporation A surface into air spa <i>must be lin</i> water <u>vapo</u> <i>accept if n</i> out / throu	ter potential, acce athway, described bathway, described of mesophyll cells ace(s); hked to evaporation our diffuses (out); o vapour but follow gh / via <u>stoma(ta)</u>	pt ψ for water potential ; I / used in correct context ; d / used in correct context ; <u>cell walls</u> ; n / water vapour ws from evaporation ;	h(er) water potentia	l to a
 (a) all points except mp3 may be taken from a labelled/annotated diagram ref. to, attachment / AW, to mRNA; idea of two codon attachment, sites / space, for six bases or nucleotides; mRNA has code for sequence of amino acids (in a polypeptide); (ribosome) provides sites for attachment of two tRNA (molecules); A implied each tRNA has a specific amino acid / AW; (mRNA) codon – anticodon (tRNA), binding; A description in terms of complementary base pairing A 'matching' formation of peptide bonds (catalysed by peptidyl transferase); idea of ribosome moving along mRNA one codon at a time; (b) (i) GGC; (ii) CTA; (c) 1 amino acid coded by codon 2 changed; amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; <i>idea of</i> premature chain termination (if stop codon further on) / AW; <i>idea of</i> protein non-functional; ignore 'affect / effect' 		0					[mov 5]
 (a) all points except mp3 may be taken from a labelled/annotated diagram ref. to, attachment / AW, to mRNA; <i>idea</i> of two codon attachment, sites / space, for six bases or nucleotides; mRNA has code for sequence of amino acids (in a polypeptide); (ribosome) provides sites for attachment of two tRNA (molecules); A implied each tRNA has a specific amino acid / AW; (mRNA) codon – anticodon (tRNA), binding; A description in terms of complementary base pairing A 'matching' formation of peptide bonds (catalysed by peptidyl transferase); <i>idea</i> of ribosome moving along mRNA one codon at a time; (b) (i) GGC; (ii) CTA; (c) 1 amino acid coded by codon 2 changed; <i>idea</i> of every subsequent <u>codon</u> changed; amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; <i>idea</i> of premature chain termination (if stop codon further on) / AW; <i>idea</i> of protein non-functional; ignore 'affect / effect' 		0	AVF, IEI.	to water leaves un		655615	[max 5]
 1 ref. to, attachment / ÅW, to mRNA ; 2 <i>idea of</i> two codon attachment, sites / space, for six bases <i>or</i> nucleotides ; 3 mRNA has code for sequence of amino acids (in a polypeptide) ; 4 (ribosome) provides sites for attachment of two tRNA (molecules) ; A implied each tRNA has a specific amino acid / AW ; 6 (mRNA) codon – anticodon (tRNA), binding ; A description in terms of complementary base pairing A 'matching' 7 formation of peptide bonds (catalysed by peptidyl transferase) ; 8 <i>idea of</i> ribosome moving along mRNA one codon at a time ; (b) (i) GGC ; (ii) CTA ; (c) 1 amino acid coded by codon 2 changed ; 2 <i>idea of</i> every subsequent <u>codon</u> changed ; 3 amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed ; 4 <i>idea of</i> premature chain termination (if stop codon further on) / AW ; 5 <i>idea of</i> change in, <u>primary</u> / <u>secondary</u> / <u>tertiary</u>, structure of protein ; 6 <i>idea of</i> protein non-functional ; ignore 'affect / effect' 							[Total: 10]
 (ii) CTA; (c) 1 amino acid coded by codon 2 changed; 2 <i>idea of</i> every subsequent <u>codon</u> changed; 3 amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; 4 <i>idea of</i> premature chain termination (if stop codon further on) / AW; 5 <i>idea of</i> change in, <u>primary</u> / <u>secondary</u> / <u>tertiary</u>, structure of protein; 6 <i>idea of</i> protein non-functional; ignore 'affect / effect' 		1 2 3 4 5 6 7	ref. to, atta idea of two mRNA has (ribosome A implied each tRNA (mRNA) co A descript A 'matchir formation	achment / AW, to n o codon attachmer s code for sequence) provides sites for A has a specific am odon – anticodon (ion in terms of con og peptide bonds (nRNA ; nt, sites / space, for six bases ce of amino acids (in a polype r attachment of two tRNA (mo nino acid / AW ; (tRNA), binding ; nplementary base pairing catalysed by peptidyl transfer	or nucleotides ; eptide) ; elecules) ; rase) ;	[max 4]
 (ii) CTA; (c) 1 amino acid coded by codon 2 changed; 2 idea of every subsequent codon changed; 3 amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed; 4 idea of premature chain termination (if stop codon further on) / AW; 5 idea of change in, primary / secondary / tertiary, structure of protein; 6 idea of protein non-functional; ignore 'affect / effect' 	(b)	(i)	GGC ·				[1]
 (c) 1 amino acid coded by codon 2 changed ; 2 idea of every subsequent codon changed ; 3 amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed ; 4 idea of premature chain termination (if stop codon further on) / AW ; 5 idea of change in, primary / secondary / tertiary, structure of protein ; 6 idea of protein non-functional ; ignore 'affect / effect' 							
 <i>idea of</i> every subsequent <u>codon</u> changed ; amino acids / protein sequence, up to and including codon 1 unaffected / AW ora amino acid sequence from codon 2 onwards is changed ; <i>idea of</i> premature chain termination (if stop codon further on) / AW ; <i>idea of</i> change in, <u>primary</u> / <u>secondary</u> / <u>tertiary</u>, structure of protein ; <i>idea of</i> protein non-functional ; ignore 'affect / effect' 	((ii)	CTA ;				[1]
		2 3 4 5	idea of eve amino acio ora amino idea of pre idea of cha idea of pro	ery subsequent <u>co</u> ds / protein sequer acid sequence fro emature chain term ange in, <u>primary</u> / <u>s</u> otein non-functiona	don changed ; nce, up to and including codo om codon 2 onwards is chang nination (if stop codon further secondary / <u>tertiary</u> , structure	jed ; on) / AW ;	
R if this point is out of context			A in conte	xt of enzyme not fu			
		7					[max 3]
[To							[Total: 9]

Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	23
A alter includi interac and ab in an ic	nd abiotic, components / AW ; natives to biotic and abiotic <i>ng commumity / AW for biotic and habitat / environment, f</i> ing / AW ; <i>idea of</i> interactions between organisms <i>or</i> inte otic environment entifiable / a defined / a self-contained area / place / unit of place if qualified with correct example	ractions betwe	-
	isses / shrubs / trees ; singular or plural		[1]
	der / predatory insect ; singular or plural		[1]
1 2 3&4	<i>loss at each level because of</i> inedible parts / not all of the organism can be eaten ; indigestible parts / not all is digested / egestion / faeces ; <i>energy / heat, losses from</i> ;; respiration R energy used for respiration movement A energy used for movement excretion digestion <i>energy not utilised by plants by e.g. reflection from leave</i>	s, etc.	[max 3]
1 de 2 dig 3 ide 4 de 5 pr 6 nit A sig ig	ing death of organisms or excretion of nitrogenous waste composers / saprotrophs / bacteria / fungi / scavengers / est / breakdown / hydrolyse, protein / urea ; a of assimilation in / growth of, decomposers / AW ; amination ; oduction of ammonium (ions) / ammonification ; A ammor ification described <i>or</i> denitrification described ; formulae for ammonium ions, nitrite ions and nitrate ions l ns nitrification described in terms of ammonium (ions) to nitrate ore nitrogen fixation as used correctly (N ₂ to fixed N) nore uptake of nitrate ions or ammonium ions by plants <i>not credit nitrification if any confusion with nitrogen fixation</i>	iia / NH₃ out must be col ate (ions)	rrect including [max 3]
			[Total: 10]