As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9700 BIOLOGY

9700/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9700	02

1 (a) check column **A** and **B** for correct ref. to feature if not clear in first column e.g. gives description

feature	phagocyte (A)	plasma cell (B)
<u>rough</u> endoplasmic reticulum / <u>R</u> ER	small quantity / AW A few, less	large quantity / AW ; A many, more
allow ER if rough / RER stated in next column(s) R <u>S</u> ER		
ribosomes	few	many ;
	or	or
	ref. to free	not free / fixed
lysosomes	some / present / ✓	none / absent / x ;
vacuoles / vesicles / phagosomes	some / present / ✓	none / absent / x ;
nucleus	lobed / AW A irregular, not round	round / not lobed / not irregular / AW ;
	R curved, elongated, no definite shape	A spherical, circular
Golgi (body)	absent / x	present / ✓ ;
plasma / cell (surface), membrane	with, endocytotic / pinocytotic / phagocytic / exocytotic, vesicles / vacuoles	without, endocytotic / pinocytotic / phagocytic / exocytotic, vesicles / vacuoles
	A invaginations, infoldings	A no invaginations, no
	R indentations	infoldings
		R no indentations
mitochondria	less / few / 3	more / many / 7 ;

[3 max]

(b) (to nearest <u>whole</u> number) (x) 6000 ;; A 5900 – 6100 allow 1 mark for correct working if answer incorrect / not to whole number e.g. length of scale bar in mm × 1000, divide by actual size 60 mm × 1000 / 10 A 59 – 61 mm

[2]

P:	age 3	Mark Scheme Syllabus									
	-900	GCE A/AS LEVEL – October/November 2008	9700	Paper 02							
(c)	ingest / mic R a (form) p A v ref to ly enzyme <u>digest</u> / antigen plasma produce into, pla antibod ref to, R specific	yte o sites of infection ; engulf / pseudopodia enveloping / phagocytosis of / en probes / pathogens / AW ; ntigens, virus hagocytic / endocytotic, vacuoles ; esicles, phagosomes sosomes ; s / named (hydrolytic) enzymes ; <u>hydrolyse</u> , (bacteria / AW) ; presentation / description ;	docytosis of, bacte								
(d)	Golgi (b (bacteri less like ant ref to m (bacteri (mycob) ensures otherwis	a likely to be) resistant to (at least) one antibiotic (so us by to be resistant to all / chance that bacteria will develo biotics used is very small ; utation / change to DNA ; a are) inside cells where protected from antibiotics ; acteria) divide / grow, slowly ; all bacteria killed / reduces below critical level ; se, bacteria remain / reservoir of infection ; vents development of antibiotic resistance ;	esicles ; eless) ;	[3 max] [4 max] [Total: 15]							
2 (a)	(soil to) idea of apoplas symplas through (becaus ref to pa	Ts to mechanisms as neutral root hair ; across, cortex / cortical cells (root) ; t / along cell walls ; st / via, cytoplasm / plasmodesmata ; , endodermis / endodermal cells, by symplast pathway se of) suberin / Casparian strip ; assage cells ; t into the xylem ;	• •	[4 max]							
(b)	(for larg <u>cell</u> mo cor	mata are open (to allow diffusion / gas exchange) ;) entry of CO ₂ / release of O ₂ ; AW ge surface area inside leaf (for gas exchange) ; <u>surfaces</u> / <u>walls</u> , in (palisade / spongy) <u>mesophyll</u> ; ist / damp / wet ; rect ref to evaporation ; ter <u>vapour</u> , diffuses out / AW; A water <i>if linked to evapo</i>	ration	[3 max]							

 (ii) adaptations (epidermal) hairs / trichomes ; R spikes, spines stormata in, pits / cavities / chambers ; R sunken stormata reduced air movement / still air ; holds water <u>vapour</u> / has high(cr) humidity / AW ; A holds moist air (therefore) less steep, water potential / vapour pressure / diffusion, <u>gradient</u> ; A qualified rel to diffusion shells between air inside leaf and air in pits ; thick water <u>vapour</u> / has high(cr) humidity / AW; A holds moist air (therefore) less steep, water potential / vapour pressure / diffusion, <u>gradient</u> ; A qualified rel to diffusion shells between air inside leaf and air in pits ; thick wated epidermai cells ; cuticle reflects sunlight ; stomata only on lower surface / no stomata on upper surface ; [3 ma [Total: 1 (a) (i) tertiary (structure) ; A 3° (ii) secondary (structure) ; A 2°, <u>alpha / g</u>, helix (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; <u>decenerate</u> code / description e.g. 64 possible triplets for 20 amino acids ; A codons AV/P ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) (c) (i) <i>reject references to time e.g. rapid, slowly</i> as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / KW i Y 1 on 150 for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentration less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; A large percentage difference in <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80 decline / decrease, shallower / less steep from 0 – , 40 / 60 / 70 / 80, for S. <i>aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 decline / decrease, shallower / less teep rimore disput, from 60 / 70 / 80 decline / decrease, more significant / steeper / more abo	Page 4	ŀ				lark Schen					Syllabus	Paper		
 (e)idermal) hairs / trichomes; R spikes, spines stomata in, pits / cavities / chambers; R sunken stomata reduced air movement / still air; holds water <u>vapour</u> / has high(er) humidity / AW; A holds moist air (therefore) less steep, water potential / vapour pressure / diffusion, <u>gradient</u>; A qualified ref to diffusion shells between air inside leaf and air in pits; <u>thick / waxy</u>, cuticle (on upper, epidermis / surface); multilayered, epidermial / hypodermis; thick walled epidermal cells; cuticle reflects sunlight; stomata only on lower surface / no stomata on upper surface; (a) (i) tertiary (structure); A 3° (ii) secondary (structure); A 2°, <u>alpha / q</u>, helix (b) active site; A catalytic site (c) (i) mRNA CGU ; UGC / UGU CAA i; DNA CCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; degenerate code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP; e.g., may be an intron in this region, different nucleotides at the beginning (signal sequence) (c) (i) <i>reject references to time e.g. rapid</i>, <i>slowly</i> as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 decline / decrease, hallower / less steep from 0 – ., 40 / 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 decline / decrease, hallower / less steep / more gradual, decline / steeper / more abrupt, from 60 / 70 / 80 up to 150 always more <i>S. aureus</i> that <i>E. coli</i> ; ore all bacteria survive with no lysozyme; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW; A ora all <i>E. odi</i> killed, at 150 pmol dm³ (of lysozyme / takighest concentration ; comparative data quobe ; <i>both axes</i>, <i>both curves</i> comparat			GC	E A/AS	LEVEI	L – Octobe	r/No	vembe	r 2008		9700		02	
 stomata in, pits / cavities / chambers ; R sunken stomata reduced air movement / still air ; holds water <u>vapour</u> / has high(er) humidity / AW ; A holds moist air (therefore) less steep, water potential / vapour pressure / diffusion, <u>gradient</u> ; A qualified ref to diffusion shells between air inside leaf and air in pits ; <u>thick / waxy</u>, cuticle (on upper, epidermis / surface) ; multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ; stomata only on lower surface / no stomata on upper surface ; [3 ma [4] (i) tertiary (structure) ; A 3° (ii) secondary (structure) ; A 2°, <u>alpha / a</u>, helix (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA ; DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; <u>degeneratic</u> code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) (c) (i) <i>reject references to time e.g. rapid, slowly</i> as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / NW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving from 0 – , 60 / 70 / 80 decline / decrease, shallower / less steep rom 0 – , 40 / 60 / 70 / 80, up to 150 for <i>E. survivis</i> for 3. <i>aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 decline / decrease, shallower / less steep rom 0 – , 40 / 60 / 70 / 80, up to 150 for <i>E. coli</i> ; Mange precentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 decline / decrease, shallower / less steep rom 0 – , 40 / 60 / 70 / 80, up to 150 for <i>E. coli</i> ; Mange precentage difference i	(ii)	adap	otations	6										
 holds water <u>vapour</u> / has high(er) humidity / AW : A holds moist air (therefore) less steep, water potential / vapour pressure / diffusion, <u>gradient</u> : A qualified ref to diffusion shells between air inside leaf and air in pits : thick walled epidermais / hypodermis ; turface) ; multilayered. epidermis / hypodermis ; turface / no stomata on upper surface ; [3 me [Total: 1 stomata only on lower surface / no stomata on upper surface ; [3 me [Total: 1] (a) (i) tertiary (structure) ; A 3° (ii) secondary (structure) ; A 2°, <u>alpha / α</u>, helix (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA (c) (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; degenerate code / description e.g. 64 possible triplets for 20 amino acids; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) <i>reject references to time e.g. rapid, slowly</i> as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decrease, form 10 to 150 for <i>E. coli</i>; decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i>; decline / decrease, 0 to 10 / first two concentrations for <i>S. aureus</i>; A small percentage difference in <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80, or S. aureus; A large percentage difference in <i>S. aureus</i> surviving from 0 / 70 / 80, or S. aureus; A large percentage difference in <i>S. aureus</i> surviving from 0 / 70 / 70 / 80 up to 150 for <i>S. aureus</i>; takiling / against, <i>E. coli</i> / AW; A ora all bacteria survive with no lysozyme; ivazyme is more abrupt, from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; takiling / against, <i>E. coli</i> / AW; A ora all bacteria survive kithing / against, <i>E. coli</i> / AW; A ora all bacteria survive kithing / against, <i>E. coli</i> / A		•••	,					•	stomata	1				
 multilayered, epidermis / hypodermis; thick walled epidermal cells; cuticle reflects sunlight; stomata only on lower surface / no stomata on upper surface; [3 ma [Total: 1] (a) (i) tertiary (structure); A 3° (ii) secondary (structure); A 2°, alpha / a, helix (b) active site; A catalytic site (c) (i) mRNA CGU; UGC / UGU GAA DNA GCA ACG / ACA CTT; (ii) many / several / more than one, triplet for each amino acid; A codon an e.g. from Table 3.1; degenerate code / description e.g. 64 possible triplets for 20 amino acids; A codons AVP; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) (c) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i>; decline / decrease, shallower / less steep from 0 – , 40 / 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A small percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; both axes, both curves comparative with no lysozyme; comparative data quote; <i>both axes, both curves</i> (ii) wilfferent, polysaccharides / peptidoglycans, in cell wals; 		hold	s water (therefo	r <u>vapour</u> ore) less	/ has l s steep	high(er) hur , water pote	entia	l / vapo	ur press	ure / o	diffusion, <u>gra</u>		;	
 stomata only on lower surface / no stomata on upper surface ; [3 ma [Total: 1 [4] (i) tertiary (structure) ; A 3° (ii) secondary (structure) ; A 2°, alpha / α, helix (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / tysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / tysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations for <i>S. aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i>; than <i>E. coli</i>; ora all bacteria survive with no lysozyme; increases short curves comparative data quote ; both axes, both curves comparative data quote ; both axes, both curves comparative data quote ; both axes, both curves comparative data quote ; both axes, both curves (ii) different, polysaccharides / peptidoglycans, in cell walls ; 		multi thick	ilayereo walleo	d, epide l epideri	rmis / l mal cel	hypodermis		/ surfac	ce);					
 (a) (i) tertiary (structure); A 3° (ii) secondary (structure); A 2°, <u>alpha / q</u>, helix (b) active site; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid; A codon an e.g. from Table 3.1; <u>degenerate</u> code / description e.g. 64 possible triplets for 20 amino acids; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i>; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i>; decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 for <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80, up to 150 always more S. aureus than <i>E. coli</i>; ora all bacteria survive with no lysozyme ; lysozyme i, increase function for 0 / 70 / 80, up to 150 always more S. aureus than <i>E. coli</i>; ora all <i>E. coli</i> killed, at 150 pmol dm³ (of lysozyme) / A ra all <i>E. coli</i> killed, at 150 pmol dm³ (of lysozyme) / A ra (ii) different, polysaccharides / peptidoglycans, in cell walls ; 						face / no st	oma	ta on u	pper surf	face ;			[3 ma	
 (ii) secondary (structure); A 2°, <u>alpha / α</u>, helix (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; <u>degenerate</u> code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slow/y as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, ou pto 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80, ou pto 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80 up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 prol dm³ (of lysozyme) / at highest concentration ; comparative data quote ; <i>both axes, both curves</i> comparative data quote ; <i>penalise once for lack of units in both</i> (ii) different, polysaccharides / peptidoglycans, in cell walls ; 												ד]	otal: 10	
 (b) active site ; A catalytic site (c) (i) mRNA CGU ; UGC / UGU GAA DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; degenerate code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80 decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 always more S. aureus than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW; A ora all <i>E. coli</i> killed, at 150 pmol dm³ (of lysozyme) / at highest concentration ; comparative data quote ; both axes, both curves comparative data quote ; penalise once for lack of units <u>in both</u> [4 ma (ii) different, polysaccharides / peptidoglycans, in cell walls ; 	(a) (i)	tertia	ary (stru	ucture) ;	A 3°								[′	
 (c) (i) mRNA CGU ; UGC/UGU GAA DNA GCA ACG/ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; degenerate code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 0 - ,40 / 60 / 70 / 80, for <i>S. aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 0 - , 60 / 70 / 80 decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 0 - , 60 / 70 / 80 decline / 10 for 0 / 10 / 80 decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 pmol dm³ (of lysozyme) / at highest concentration ; comparative data quote ; both axes, both curves comparative data quote ; penalise once for lack of units in both [4 materia (ii) different, polysaccharides / peptidoglycans, in cell walls ; 	(ii)	seco	ondary	(structu	⁻ e); A	2°, <u>alpha</u>	/ <u>α,</u> ł	nelix					[′	
 DNA GCA ACG / ACA CTT ; (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1; degenerate code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E.coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; decline / decrease, othallower / less steep from 0 – .40 / 60 / 70 / 80, for <i>S. aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 60 - 70 / 80 decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 always more S. aureus than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 pmol dm⁻³ (of lysozyme) / at highest concentration ; comparative data quote ; both axes, both curves comparative data quote ; penalise once for lack of units in both [4 material formed in the cole in the curves] 	(b) act	ive sit	e; A c	catalytic	site								['	
 (ii) many / several / more than one, triplet for each amino acid ; A codon an e.g. from Table 3.1 ; degenerate code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E. coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; decline / decrease, shallower / less steep from 0 – ,40 / 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 pmol dm⁻³ (of lysozyme) / at highest concentration ; comparative data quote ; <i>both axes, both curves</i> comparative data quote ; <i>penalise once for lack of units in both</i> [4 materia (ii) different, polysaccharides / peptidoglycans, in cell walls ; 	(c) (i)	mRN	A	CGU	; UC	GC / UGU		GAA						
 an e.g. from Table 3.1 ; <u>degenerate</u> code / description e.g. 64 possible triplets for 20 amino acids ; A codons AVP ; e.g. may be an intron in this region, different nucleotides at the beginning (signal sequence) [2 ma (d) (i) reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E.coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; decline / decrease, shallower / less steep from 0 – ,40 / 60 / 70 / 80, for <i>S. aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference in <i>S. aureus</i> surviving from 60 / 70 / 80, up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 pmol dm⁻³ (of lysozyme) / at highest concentration ; comparative data quote ; <i>both axes, both curves</i> comparative data quote ; <i>penalise once for lack of units <u>in both</u> (ii) different, polysaccharides / peptidoglycans, in cell walls ;</i> 		DNA	•	GCA	AC	CG / ACA	,	СТТ	;				[(
 as the concentration of, enzyme / lysozyme, increases the percentage of bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations, for <i>E. coli</i> ; A large percentage difference in <i>E.coli</i> surviving at 0 to 10 / first two concentrations less steep / more gradual, decline / decrease, from 10 to 150 for <i>E. coli</i> ; decline / decrease, shallower / less steep from 0 – ,40 / 60 / 70 / 80, for <i>S. aureus</i> ; A small percentage difference in <i>S. aureus</i> surviving from 0 – , 60 / 70 / 80 decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150 for <i>S. aureus</i> ; A large percentage difference <i>in S.aureus</i> surviving from 60 / 70 / 8 up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW ; A ora all <i>E. coli</i> killed, at 150 pmol dm⁻³ (of lysozyme) / at highest concentration ; comparative data quote ; <i>both axes, both curves</i> comparative data quote ; <i>penalise once for lack of units in both</i> [4 materia] (ii) different, polysaccharides / peptidoglycans, in cell walls ; 	(ii)	an e <u>dege</u> AVP	.g. fron enerate ; e.g.	n Table code / may be	3.1 ; descrip an intr	otion e.g. 64	l pos	ssible tr	iplets for	⁻ 20 ai	mino acids ;			
		as the steep less decli decli alwa all ba lysoz all <i>E</i> comp comp	ne conc bacteria p, decli A large steep / ine / de A smal ine / de for <i>S. a</i> up to 1 bys mor acteria zyme is <i>coli</i> ki parativo parativo	entratio a surviv ine / dec e percen / more g ecrease, l percen ecrease, aureus ; 50 re <i>S. au</i> survive s more e lled, at e data q e data q	n of, el ing dec crease, tage d radual shallo tage di more A large reus th with no effective 150 pm uote ; uote ;	nzyme / lys creases / A' 0 to 10 / fii ifference in , decline / d wer / less s ifference in significant / e percentag an <i>E. coli</i> ; o lysozyme e, at killing hol dm ⁻³ (of <i>both axes,</i> <i>penalise o</i>	ozyr W ; I Est tw Ecce ecre teep S. au stee ge di ora ; / aga lyso both nce	ne, incr R if only vo conc oli survit ase, from 0 ureus s oper / m fference ainst, <i>E.</i> ainst, <i>E.</i> or curves for lack	v 1 name entration ving at 0 om 10 to – ,40 / 6 surviving iore abru e in S.au coli / AV at highe s of units <u>i</u>	d ns, for to 10 150 f 60 / 70 from 0 ipt, fro <i>reus</i> s <i>RV</i> ; A est con	<i>E. coli</i> ; / first two c or <i>E. coli</i> ; / 80, for <i>S.</i> 0 – , 60 / 70 / om 60 / 70 / surviving fro	<i>aureu</i> / 80 80, up m 60 /	<i>is</i> ; o to 150	
	(11)	amei	rent, po	blysaccr	arides		-		ell walls ;					

	Pa	ge 5	5	Mark Scheme Syllabus											us		F	Par	ber													
					G	iC	E /	\/A	S L	.E\	/EI	L -	- 0	Dct	tok	bei	r/N	lov	em	be	r 20	008	8			700				0		
			S. au ref to ref to S. au AVP	os os ure	sha sha e <i>u</i> s	ape ape s h	e o e o las	f ac f, p a c	ctive olys cap	e si sac sul	ite cch le /	; nar ′ oi	ide ra	e/ ;/	ре А р	ept orc	ido ote	ogly	/cai	n (t	o fi				•••			n ce		[; 2 ma t al: 1	-
																													L	10	lai. I	-1
4	(a)	blo	od pa: A or A sy	ne	C	/cl	e /	one	e ci	ircu	ulat	tio	n I	R	car	dia	ac	сус	le		•		e) cii	rcui	t of	the	boo	dy ;			[[1]
	(b)	with	nstand	ds	hi	gh	(er) bl	000	d p	res	รรเ	ure	Э;																		
	. ,	mai	intains to <u>mo</u> A thi	s k re	olo , e	oc la	pr stir	ess / c	sure	э;					oth)) n	nu	scle	Э;											[2 ma	ax]
	(c)	bloo any vas	cocons contr od, div v suita codilat od rec	rol ve bl	rte e e	rec ed e.g re	duc / sl . ; lax	e, l nun div	bloo ited vert	od I, e œd te /	flo ^r lse frc	wii ewl om oer	ng he ı, s n /	i th re skir	irou ; n w ide	ug /he en,	h ɗ en to	cap col all	illaı d / ow	ries gut blc	s; tdu ood	urin to	ng e flov	xero v th	rou	gh d					ide ; 1 ma	ax]
	(d)	wat <u>hyd</u> (ca	es / g A po er / io <i>R list</i> <u>lrostat</u> using) ocytos	ire ns t и tic) р	s i s / vhi pr ore	n glu ich res ss	cap uco co su ure	oilla ose onta re c e filt	iry v , m a <i>ins</i> of b trati	wal ove s <i>in</i> oloc ion	ll F con od i / A	R sout rre is g AW	spa ; e <i>ct</i> gre V e	ace A i <i>su</i> eat	es, nai <i>ibs</i> ter	h me sta th	ole ed <i>nc</i> an	es sm ce / n (h	all red ydr	sol ble ost	ubl ooc atic	c) p	subs ells pres	sure	e of	tise					king [3 ma	ax]
		(i)	any a more more lowe lowe highe AVP	≥ / ≥, 1 r, r, er ;	pl fat wa car ox e.	as co / 1 ate bc g.	ma se fatt r / on o jen ce	i, pi ; F soli diox co Il se	rote cide ute kide once	eins uga s / , po e co ent ete	s; ars gly ote onc rat s s	/ce ent cer ior	ial ntr n ; ost	; rati tan	on ice	/ I	lov nat	ver	coi n h	nce	entr	ati	on c				tiss	ue f	fluid,		<u>3</u> ma	ax]
		(ii)	lymp	h	/ h	/m	nh	atic	: flu	hiu																					I	[1]
		('')	ymp		ני ,	,	114		- 110		,																			_	-	
																													ſ	Γο	tal: 1	1]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9700	02

5 (a) one mark for each row

statement	haemoglobin	DNA	phospholipids	antibodies	
contains iron	\checkmark	х	x	х	;
contains phosphate	х	\checkmark	\checkmark	x	;
able to self- replicate	х	\checkmark	х	х	;
hydrogen bonds stabilise the molecule	\checkmark	\checkmark	x	\checkmark	;
contains nitrogen	\checkmark	\checkmark	\checkmark	\checkmark	;

[5]

(b) AVP answers must be in context to a watery external environment ref to molecules held together / strong attraction / AW ;

A cohesion between water molecules

detail of hydrogen bonding, e.g. slight –ve charge on O, slight +ve charge on H ; A water molecules are polar

high boiling point / boils at 100°C;

high latent heat of vaporisation ;

so water is liquid over wide range of temperatures ;

(liquid so) provides, support / buoyancy;

high (specific) heat capacity ;

stable temperature / temperature of water does not change quickly ;

large amount of energy needed to be transferred from water for it to freeze / high latent heat of fusion ;

maximum density at $4^{\circ}C$ / less dense at $0^{\circ}C$;

provides surface tension ;

ref solvent ;

AVP ;

AVP ;

e.g. ref to surface dwellers, less need for support tissue,

stable habitat qualified, ref upwelling currents

ice floats / insulates

[5 max]

[Total: 10]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9700 BIOLOGY

9700/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 2	2		Mark Scheme		Syllabus	Paper
			GCE A/AS L	EVEL – October	November 2008	9700	02
(a)	(i)	brac	ket extends acro	oss whole bilayer	;		[1]
	(ii)	mos	spholipids move A pho <i>aic</i> eins, scattered /	spholipids are liqu	phospholipids / bila		[2]
	(iii)	<i>both</i> disu antig	n made of, protei n <i>have</i> Iphide bond ; gen binding site able region ;	n / polypeptide(s) ;	/ amino acids ;		
		cons	stant region ;	A non-variable			[2 max]
(b)	sec to s (wh stir cyt sec des atta	stimul nich) p nulate otoxic ek out stroy, ach to	 release / production ate B cells to, disponduce antibodi produce antibodi macrophages t / killer T cells / find / bind to, (virally infected hose surface of cells 	vide / develop into es ; o carry out phago foreign) antigens, iost cells / intracel / 'punch holes' int		ogens ; ises ; surface (plasma)	membrane; [4 max]
(c)	bar adf ide allo ref mo act ref eno rec	rrier to nesior a of ro bw sul to cha to cha to cha to fac docyto cognis	etaining, large m bstances across annel proteins ; a bstances throug ansport ; silitated diffusion osis / exocytosis e, hormones / ne	es / water soluble nolecules / cell cor , passively / by dif A pore <i>allow tra</i> h carrier proteins ; / phagocytosis / p	ntents; fusion ; <i>insport protein once</i> ; inocytosis ; chemical signals ;	2	[3 max]
							[Total: 12]
							[i otal:

	Pa	ge 3		Mark Scheme Syllabus										
				GCE A/AS LEVEL – October/November 2008	9700	Paper 02								
2	(a)	(i)	ลรรเ	ime answer is about glycogen										
			1–6	iched ; , glycosidic, links / bonds ; coiled / helical ;		[2 max]								
			insol gluc (so) (so)	pact so large quantity can be stored ; luble so no osmotic effect ; ose would lower water potential ; A decrease, more r water would enter and cell volume would increase ; plant cells would need thicker cell walls / animal cells ose reactive molecule ;	-	[3 max]								
	(b)	use												
		1 2												
		3 4 5		[3 max]										
		J	onan	n now ends with –OH on C4 ;		[Total: 8]								
3	(a)	 max 2 if no reference to data up to substrate concentration of 24 / 25 g dm⁻³, substrate concentration is limiting 24 / 25 to 30 g dm⁻³, another factor is limiting ; enzyme concentration / temperature / pH ; active sites, not filled up to 24 / 25 g dm⁻³ / all filled above 24 / 25 g dm⁻³ ; A enzyme working at maximum rate 												
		ret to	o col	lisions between substrate molecules and enzyme ;		[3 max]								
	(b)			ape starting at the origin and with plateau starting at 2 [,] A plateau that starts between 7–12 au	4 / 25gdm ⁻³ ;	[2]								
	(c)	sam fits i	petiti e <u>shi</u> to ac nto a	ive inhibitor / effect described in terms of <u>competition</u> ; <u>ape</u> as protein / substrate / elastin ; A complementary ctive site R same / similar, structure to active site active site ; entry of substrate / prevents formation of ES complex										
		fits i <u>shap</u>	nto, a <u>pe</u> of	petitive inhibitor / described in terms of <u>not competing</u> a site other than active site / allosteric site ; enzyme changes / <u>shape</u> of active site changes ; e no longer complementary shape to substrate ;	;									
		e.g. bloc	by c ks ad	s permanently with, active site / other site on enzyme ; ovalent bonding ; ccess to active site / causes tertiary structure to chang formation of ES complex ;		[3 max]								

·																			
	Pa	ge 4								Sche					S	Syllab		P	aper
					GCI	E A/A	\S LI	EVEI	L – O	ctob	er/N	ovem	ber 20	008		9700			02
	(d)	sam	up dif e cor Isure	nce	entra	tion o	of inh	nibito		ubstra	ate ;								
		lowe	same	e a e p	t lov latea	au;						ut at h inhibit	-	ıbstrat	e cor	ncentr	ation v	vill rea	ach the
		<i>if non-competitive / irreversible</i> lower rate / no activity / does not reach the same rate at high substrate concentrations increase substrate concentration does not reverse inhibition ;													IS ;				
		acce	ept sł	ket	ch g	raphs	s to s	show	resu	lts									[4 max]
	(e)	expands / stretches, during inhalation ; recoils during exhalation ; forces air out of alveoli ; prevents bursting of alveoli ;												[2 max]					
		prov	onto			9 01 0		, ,											
	(f)		hyse A CC					obstr	uctiv	e, pul	lmon	ary / I	ung di	sease	•				[1]
																		[Т	otal: 15]
4	(a)	 H⁺ pumped out ; creates an H⁺ gradient ; sucrose moves in with H⁺ <u>co-transport</u> / through <u>co-transporter</u> ; energy / ATP, provided by mitochondria ; sucrose diffuses down concentration gradient ; through plasmodesmata ; 											[4 max]						
	(b)) large surface area : volume ratio / to <u>increase</u> surface area ; gives large surface area of membrane ; (so) many, pumps <i>or</i> co-transporters ;											[2 max]						
	(c)	 (i) high<u>er</u> / great<u>er</u> resolution / resolv A 0.5 nm (0.0005 μm) compatible because of short<u>er</u> wavelength; more detail can be seen / much clical / can see two points that are of can see cell structures that are not A e.g. ribosomes / membrane can see detail of structures just vis A mitochondrion / chloroplast 							npare i ; A h clea ire clo e not v anes it visit	ed wit smal arer (ose to visibl	th 200 ller (at the ogethe le in th	nm ((same er ; ne LM	e magr ;	,	tion)			[2 max]	

Second variant Mark Scheme

	Page 5	Mark Scheme	Syllabus	Paper
	i ugo o	GCE A/AS LEVEL – October/November 2008	9700	02
	sie sie sc	ng (length greater than width) ; eve plates ; eve pores ; me / less / peripheral, cytoplasm ; nucleus / fewer mitochondria / less ER ; n wall ;		[2 max] [Total: 10]
5	<i>P. falc</i> to require	itted by, <i>Anopheles</i> / mosquito / (insect) vector ; <i>parum</i> / parasite, needs, warm / hot, temperatures / >20 complete its life cycle (in the mosquito) ; ement for areas of still water (ref. mosquito life cycle); ated in areas outside tropics (e.g. North America) ;	°C,	[2 max]
	(b) (i) A B	28 ; 14 ;		[2]
	re pr	duce / halve, chromosome number ; ain diploid number at fertilisation ; event chromosome number doubling each generation ; f to variation ; A ref. to meiosis crossing over / independ	ent assortment	[2]
	A many a antige idea th mutation Plasm A T-lymp	c complexity of <i>Plasmodium</i> ; ref to <i>Plasmodium</i> , being eukaryotic / having many gene antigens / antigenic variation ; stages in life cycle (within human) ; ns change in different stages ; <i>at</i> variation generated during meiosis ; ons / recessive alleles, are expressed in haploid stage(s) odium / parasite, lives within cells ; A only briefly free in antigenic concealment hocyte / B-lymphocyte, receptors not stimulated ; <u>dies</u> cannot work against stages within cells ;	; ora	[4 max]
				[Total: 10]
6	B 3 C 4 D 9			

- **D** 9 **E** 6 **F** 2

[5]

[Total: 5]