MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9700 BIOLOGY

9700/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2				heme: Teachers' vo		Syllabus	Paper
1	(2)	1	mor		A LEVEL – May/Jur		9700	43
1	(a)	2			-	-		
					for salinity 16-20 not		9	[0]
		3	∠ pa	ired figs with units	; IInkea to 1			[3]
	(b)	(i)	(<u>31 -</u> 8	<u>– 8</u>) (× 100)				
			287.	.5/288 ;;				
			allov	w one mark for suit	able working if incor	rect answer		[2]
		(ii)	any	two from				
			1	(ensure) low salini	ty or more freshwate	er;		
			2	nest sites protecte	d ;			
			3	education/ecotouri	sm;			
			4	assisted breeding	;			
			5	ban on hunting ;				
			6	preventing pollutio	n;			[2 max]
								[Total: 7]
2	(a)	1	rece	ptor or binding site	not, complementar	y/ <u>specific</u> , to FSI	٦;	
		2	FSH	I has shorter β cha	in than LH ; ora			
		3	FSH	I has different, prim	nary structure/seque	nce of amino aci	ids ;	
		4	FSH	l has different, terti	ary structure/3D sha	pe;		[3 max]
	(b)	(i)	follic	cle (cells) ;	A granulosa (cells)			[1]
		(ii)	corp	ous luteal (cells) ;	A granulosa (cells)			[1]
	(c)	1	(bind	ding to a receptor),	acts as a signal to t	he cells/stimulat	es cells ;	
		2	to, s	tart/increase, <u>synth</u>	nesis of hormone;	A cells start to di	ivide	
		3	<u>oest</u>	rogen secreted ;		A mature follicle	formed (oestroge	en),
		4	stim	ulates thickening o	f endometrium/inhib	its FSH (product	tion);	[3 max]
								[Total: 8]

Pa	age 3		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9700	Paper 43						
(a)	1	peni	cillin inhibits enzyme ; ignore name of enzyme								
	2	peptidoglycan chains cannot link up/stops cross-links forming ;									
	3	cell	wall becomes weaker/AW;								
	4	turge	or of cell not resisted (by cell wall)/AW ;								
	5	cell/	wall, bursts ;		[3 max]						
(b)) (i)		as, an outer membrane/channel proteins ; as thinner (peptidoglycan) wall ; <i>accept ora for A</i>		[2]						
	(ii)	1	penicillin V can reach the, wall/(cell surface) membrane	, of A; ora							
		2	outer membrane of B stops penicillin V getting through	; ora							
		3	penicillin V cannot get through pores of outer membran	e of B ;	[2 max]						
	(iii)		penetrate outer membrane ; ugh pores/directly through as non-polar ;		[2]						
(c)	bat	ch cu	lture								
	1	set u	up and allowed to proceed ;								
	2	nutri	ents not added or products removed, (during fermentati	on);							
	3	air a	llowed in/waste gas allowed out ;								
	4	at er	nd of each process, product harvested/fermenter cleane	ed out; <i>max 2</i>	2						
	con	tinuo	us culture								
	5	nutri	ents added (all the time);								
	6	prod	lucts removed (all the time);								
	7	no d	own time/AW ;	max 2	2 [3 max]						
(d)) 1	•	<i>nicillium</i> /fungus), does not make penicillin all the time/pe es of growth ;	nicillin is made	in the later						
	2	whe	n beginning to run out of nutrients ;								
	3	(pen	icillin) is a <u>secondary</u> metabolite ;								
	4	cont	inuous culture has no yield of penicillin;								
	5	cont	inuous culture, never reaches stationary phase of growth	ı/always expon	ential growth ; [3 max]						

[Total: 15]

Pa	ge 4	1	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9700	Paper 43
4 (a)	1	can	be grown in many different environments/AW;		
	2	(gra	ins) contain variety of nutrients; A list of 3+ nutrients		
	3	deta	ail of nutrient content ; e.g. high in calcium/vitamin B/pro	otein	
	4	(gra	ins) have high, energy/fibre, content ;		
	5	(gra	ins) store well ;		[3 max]
(b)	<i>(</i> i)	and	osperm ;		[1]
(6)	(i) (ii)		both rise and then fall ;		[']
	(")	2	sorghum (enzyme) has higher activity (at all temperatu		
		2	sorghum (enzyme) has higher maximum activity;	urco),	
		4	sorghum (enzyme) has higher optimum temperature ;	▲ 70° and 60°	
		5	comparative figures to illustrate points 2 or 3 ;		[3 max]
	/:::)		(rice) tertiary structure/active site, of amylase is altered	d mara by biab ta	
	(iii)	2			imperature,
			(therefore) fewer ES/enzyme-substrate complexes for		
		3	high temperatures affect H bonds (more than other bo	nus);	
		4	amylase in rice may have more H bonds; ora		F0 1
		5	correct ref. to other named bond ;		[3 max]
(c)	(i)	1	higher CO ₂ uptake at higher light intensity; ora		
		2	comparative figures; using columns 1 and 2		
		3	CO_2 used in, Calvin cycle/light independent reaction ;		
		4	photophosphorylation/light dependent stage provides,	ATP/reduced NA	NDP;
		5	for use in, Calvin cycle/light independent reaction;		
		6	light is a limiting factor;		[3 max]
	(ii)	1	survive better at low light intensities ;		
		2	comparative figures; using columns 1 and 6		[2]
					[Total: 15]

	Page 5	5 Mark Scheme: Teachers' version		Paper	
		GCE AS/A LEVEL – May/June 2010	9700	43	
	(a) divergen	ce values less for <i>persimilis</i> than for <i>pseudoobscura</i> (at all DNA region		
,	use of fig		at all DNA region	is), Ula	

- (b) 1 some regions of DNA more prone to mutation than others ;
 - 2 mutation in some regions likely to be fatal (so not seen in populations);
 - 3 there tends to be less divergence if DNA is part of an important gene/ora ;
 - 4 detail ; e.g. causes change in essential protein [2 max]
- (c) 1 <u>allopatric speciation</u>;
 - 2 geographical/physical, barrier;
 - 3 no, breeding/gene flow, between populations;
 - 4 <u>mutations</u> occur ;
 - 5 different selection pressures/different (environmental) conditions ;
 - 6 genetic change ; e.g. different alleles selected for/change in allele frequency/change in gene pool/advantageous alleles passed on ;
 - 7 genetic drift;
 - 8 (ultimately) cannot interbreed/reproductively isolated ; [4 max]

[Total: 8]

	Page 6							achers' vers			labus	Рар	
				(GCE AS	/A LEV	EL -	- May/June :	2010	9	700	43	
6	(a)	1	allel	e/gene, fo	ound on	X chro	mos	ome;					
		2	fema	ales have	two cop	oies of,	allel	e/gene;					
		3	male	es have o	nly one	copy o	f, alle	ele/gene;				[2	2 max]
	(b)	key	to sy	rmbols									
		rec	essive	e allele	X ^a (= a	Ilele fo	CI)						
		dor	ninan	t allele	X ^A (= a	allele fo	r nor	rmal iris) ;					
			ss 1 ental	phenotyp	es	male	with	n CI/cleft iris	and	normal fe	emale ;		
		gar	netes			Xa	or	Y		all X	Α;		
		offs	pring	genotype	es			X ^A X ^a	XA	Υ;			
		offs	pring	phenoty	pes		nor	mal female	norr	mal male ;	;		
								or					
			ss 2 ental	phenotyp	ves	m	ale v	vith CI/cleft ir	ris a	nd norn	nal female	;	
		gar	netes			Xa	or	Y		X ^A o	rX ^a ;		
		offs	pring	genotype	es	X^AX ^a		X ^A Y	X	^a X ^a	XªY	,	
		offs	pring	phenoty		rmal male		normal male	clef fem	t iris/CI ale	cleft i male	ris/CI ;	[5]
	offs	prin	g phe	notypes i	nust be	linked	to ge	enotypes					

(c) 1 in 4/25%/0.25 ; R ratios

[1]

[Total: 8]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2010	9700	43
7	(a)	(i)		oval of, carbon dioxide/carboxyl group ; oval of hydrogen ;		[2]
		(ii)	P a	nd Q ;		[1]
	(b)	(i)	3;			[1]
		(ii)	1	inner mitochondrial membrane/cristae;		
			2	dehydrogenase enzymes;		
			3	release hydrogen;		
			4	hydrogen splits into protons and electrons;		
			5	electrons flow down, ETC/Electron Transfer Chain/AW	•	
			6	energy released ;		
			7	protons pumped across (inner membrane);		
			8	into intermembrane space;		
			9	proton gradient;		
			10	protons pass through, ATP synthase/stalked particles ;		
			11	ATP formed ; linked to 10		
			12	oxygen (final), hydrogen/proton and electron, acceptor	; max 4	[5 max]
	(c)	1	pyrı	uvate converted to <u>ethanal</u> ;		
		2	<u>etha</u>	anal reduced;		
		3	by r	educed NAD ;		
		4	NA	D, oxidised/regenerated ;		
		5	allo	ws glycolysis to continue ;		
		6	<u>etha</u>	anal dehydrogenase ;		
		7	<u>etha</u>	anol formed ;		
		8	prev	vents H^{+} from lowering pH ;		[4 max]

	Page 8			Syllabus 9700	Paper 43	
L	(d)	1	no,	GCE AS/A LEVEL – May/June 2010 decarboxylation/carbon dioxide removed ; A ora		
		2	sing	gle step ;		
		3	lact	ate dehydrogenase;		
		4	reve	ersible;		[3 max]
						[Total: 16]
8	(0)	(1)	1	change in genetic meterial/DNIA (in call)		
0	(a)	(i)	2	change in, genetic material/DNA, (in cell);		
				(therefore) change product of cell;		[2 mov]
		(!!)	3	during protein synthesis;		[2 max]
		(ii)		identification of transformed, cells/organisms;		
			2	avoid use of antibiotics ;		
			3	easy to detect ;		
			4	no known ill effect on GM organism ;		[2 max]
	(b)	(i)	1	reduces deficiency disease/AW;		
			2	better quality food ;		
			3	assistance to developing nations/AW;		
			4	cheap seed ; e.g. for golden rice		[2 max]
		(ii)	1	high cost of GM seed ;		
			2	too much power held by multinational companies ;		
			3	change to ecosystem ; e.g. hybridisation		
			4	GM crops may be difficult to sell ;		
			5	GM plant varieties may be genetically unstable;		
			6	no long term studies done on effects on human health	;	
			7	reduction in biodiversity/outcompetes natural variety of	r species ;	[2 max]
						[Total: 8]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9700	43

- 9 (a) 1 arranged in light harvesting, clusters/system;
 - 2 primary pigments/chlorophyll a;
 - 3 at reaction centre ;
 - 4 P700/P1, absorbs at 700(nm);
 - 5 P680/P11, absorbs at 680(nm);
 - 6 accessory pigments/chlorophyll b/carotenoids, surround, primary pigment/reaction centre/ chlorophyll a ;
 - 7 pass <u>energy</u> to, primary pigment/reaction centre/chlorophyll a ;
 - 8 P700 / PI, involved in cyclic photophosphorylation ;
 - 9 (light absorbed results in) electron excited/AW;
 - 10 emitted from, chlorophyll/photosystem;
 - 11 flows along, chain of electron carriers/ETC ;
 - 12 ATP synthesis;
 - 13 electron returns to, P700/P1;
 - (b) 14 photolysis (of water);
 - 15 releases H⁺; *R* H/hydrogen atoms
 - 16 by, P680/PII;
 - 17 e⁻ released ;
 - 18 by, P700/PI;
 - 19 both combine with NADP;
 - (reduced NADP)
 - 20 reduces, GP ; A PGA
 - 21 to TP ; A PGAL / GALP
 - 22 ATP used;
 - 23 NADP, regenerated/oxidised;

[8 max]

[Total: 15]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9700	43

10 (a) 1 nucleus in cell body;

- 2 (long) dendron ; R plural
- 3 (shorter) axon;
- 4 many mitochondria (in cell body);
- 5 many RER/nissl's granules, (in cell body);
- 6 synaptic knobs;
- 7 detail of synaptic knob;
- 8 (terminal) dendrites;
- 9 Schwann cells ;
- 10 detail of myelin sheath ;
- 11 nodes of Ranvier;
- accept points on labelled diagram
- (b) 12 Na⁺ channels open ; A sodium channels
 - 13 Na⁺ enter cell ; **R** enter membrane
 - 14 inside becomes, less negative/positive/+40mV or membrane depolarised ;
 - 15 Na⁺ channels <u>close</u>; A sodium channels
 - 16 K^+ channels open ; **A** potassium channels
 - 17 K^+ move out (of cell); **R** of membrane
 - 18 inside becomes negative **or** <u>membrane</u> repolarised ; **A** negative figure
 - max 5
 - 19 local circuits/description;
 - 20 (myelin sheath/Schwann cells) insulate axon/does not allow movement of ions;
 - 21 action potential/depolarisation, only at nodes (of Ranvier)/gaps;
 - 22 saltatory conduction/AW;
 - 23 one-way transmission;
 - 24 AVP; e.g. hyperpolarisation/refractory period

[8 max]

[7 max]

[Total: 15]