MARK SCHEME for the May/June 2008 question paper

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme	Syllabus	Paper					
				GCE A/AS LEVEL – May/June 2008	9700	04					
1	(a)	higl									
		ref.									
		ref. Vietnam (not fitting trend);									
	(b)	(i)	1	ref. variety of, species / organisms / plants / animals;							
	. ,		2	variation within species / AW ;							
			3	genetic diversity between species / AW ;		[2 max]					
		(ii)	ecol	nomic							
		• •		(some, species / plants / animals may have) uses in the	e future ;						
				medical uses / example ;	·						
				resource material; e.g. wood for building / fibres for clo	othes						
			4	food (for humans) / agriculture ;							
			5	tourism / example ;							
			6	ref. maintain gene pool / genetic diversity ;							
			7	prevention of natural disasters ;							
			8	AVP ; e.g. ref. biological control (predators / parasites	reduce pest pop	,					
						[4 max]					
						[Total: 8]					
2	(a)	Δ_	(nan	creatic) duct ; A capillary							
-	(4)			of Langerhans / α and β cells ;		[2]					
		_		or _angomano,		[-]					
	(b)	αο	ells /	eta cells / islets / B , secrete, hormones / glucagon / insuli	in ;						
		into	the b	e blood / not into a duct ;							
	(c)			eases permeability of membrane to glucose / increases	glucose uptake	;					
		2		eases respiration of glucose ;							
		3		reases), conversion of glucose to glycogen / glycogene	sis;						
		4	(incr	reases) protein / fat, synthesis ;		[2 max]					
	(d)	1	it is	identical to human insulin / ora;							
		2	worł	ks better than non-human insulin / more rapid response	;						
		3	no /	fewer, rejection problems / side effects / allergic reaction	ons;						
		4	ref.	to ethical / moral / religious, issues ;							
		5	chea	aper to produce in large volume / unlimited availability ;	R cheap to p	roduce					
		6	less	risk of, transmitting disease / infection;							
		7		d for people who have developed intolerance / allergic <u>nimal</u> insulin ;	reactions / immu	ine responses [2 max]					
						[Total: 9]					

[Total: 8]

Page 3)	Mark SchemeSyllabusGCE A/AS LEVEL – May/June 20089700					
(2)	(i)	1	anthers, versatile / loosely attached / attached at one		<u>04</u>			
(a)	(1)	2	anthers / stamens / tassels / androecium, on long filan					
		2	anthers / stamens / tassels / androecium, on long man	-	(or nower),			
		4	stigmas / silks, hang out (of flower);	3,				
		- 5	stigmas, large surface area / hairy / feathery / branche	d (to catch polle	en); [3 m			
		5	sugnas, large surface area / hairy / leathery / branche		, _[511]			
	(ii)	adv 1	antages genetic variation / more diverse gene pool / increased	dene pool :				
		2	increased heterozygosity;	gene poor,				
		2		sod ·				
		4	less likely that harmful recessive alleles will be expressed ;					
		4 5	hybrid vigour / decreased inbreeding depression ;	mala .				
		5	ability to respond to changing conditions / named exar e.g. different environments / pests / disease / increase	•	pring [3 m			
(b)	(i)	1	cut <u>DNA</u> (into fragments) ;					
		2	by, restriction enzymes / named enzyme ;					
		3	place on (agarose) gel ;					
		4	apply, current / p.d. / electricity ;					
		5	fragments travel towards anode ;					
		6	short fragments travel, further / faster, than long ones	; A mass of fra	agments			
		7	visualise DNA with UV light / other means of visualisat	ion ;				
		8	AVP ; e.g. Southern blotting / described		[4 m			
	(ii)	1	change to, primary structure / secondary structure / shape;	ertiary structure	/ folding /			
		2	protein / enzyme, cannot carry out its normal function	,				
		3	(could be an enzyme) that is essential for a metabolic	pathway ;				
		4	(could) control the expression of another gene / series	of genes ;	[2 m			
	(iii)	1	(only) one base / base pair / triplet, needs to chamaize);	ange (for teosin	te to beco			
		2	idea that this could occur in a natural population of teo	sinte / mutation	;			
		3	variant, looks different / easy to spot ;					
		4	early farmers could have selected it to breed from ;					
		5	no need for complex breeding programme ;		[3 m			
					[Total:			
					L			

Page 4		L.	Mark Scheme	Syllabus	Paper				
				GCE A/AS LEVEL – May/June 2008	9700	04			
4	(a)	1		plarisation / impulses / action potential, opens calcium creased permeability to calcium ions	ion channels ;				
		2	in pr	in presynaptic <u>membrane</u> ;					
		3	calc	ium ions enter, synaptic knob / through presynaptic me	embrane ;				
		4	vesi	cles of, acetylcholine / neurotransmitter ;					
		5	fuse	with presynaptic membrane;					
		6	emp	ty contents into synaptic cleft / exocytosis ;		[3 max]			
	(b)	(i)	1	fluorescence, more / higher, in sperm from wild type m	nice / ora ;				
			2	comparative figures ; e.g. 170 v 10 and 400 v 10					
			3	mutant sperm do not have P / ora ;					
			4	so cannot take up calcium ions / ora ;		[3 max]			
		(ii)	1	fluorescence of flagella (of wild-type sperm) higher that	an heads ;				
			2	more P in flagellum than head ;					
			3	flagella take up more calcium ions ;					
			4	flagellum has larger surface area / ora ;					
			5	no difference in heads and flagella of mutant mice spe	erm since no P ;	[3 max]			
	(c)	(i)	fertil	isation, in glass / in a dish ; R "test tube baby" unex	plained				
			outs	ide the reproductive tract / outside the body ;		[2]			
		(ii)	with						
				few / no, mutant sperm penetrate zona pellucida / ora	;				
				lack of calcium ions / ora;					
			3	no / less, vigorous movement (of flagellum) / ora ;					
			with 4	<i>out ZP</i> mutant sperm can penetrate oocytes (without ZP) ;					
			5	differences in penetration less significant between wild	d type and mutant	;			
		 6 flagellum movement not needed for penetration (of oocyte membrane) 7 AVP ; e.g. smaller % success of wild-type sperm with oocytes without with wild with ZP because, lack of binding site / damage to oocyte 							

[Total: 15]

	Pa	ige 5		Mark Scheme		Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008		9700	04	
5	(a)	1	bact	erium obtains ener	gy;			
	()	2		ynthesis of materia				
		3	for, g	growth / division;				
		4	does	s not need to use c	arbon compounds for energy ; A	named carbon co	ompound [2 max]	
	(b)	1	take	s up large area ;				
		2	unsi	ghtly ;				
		3	requ	iires, lot of water / c	continuous water supply;			
		4	cont	amination of water	/ pollution due to acid ;			
		5	Cu /	Fe, toxic to plants	• ,		[2 max]	
	(c)	bio 1	es less maintena	nce;				
		2	low	energy consumptio	n / less fossil fuels used ;			
		3	few	safety hazards / sa	fer; R no hazards			
		4	orga	inism easy to, obtai	n / culture ;			
		5	self	replicating;				
		6	wast	te less hazardous ;				
		7	disp	osal of waste, cost	s less / is easier;			
		8	ref. I	ow grade ores / sc	rap iron ;			
		9	less	workers needed;				
		10	ref. ı	use in situ ;			[4 max]	
							[Total:8]	
6	(a)	allele (different) form of a gene ; A variety / version ignore refs to locus / mutation						
		<i>recessive</i> allele which does not have its effect in heterozygote / allele which (only) has its homozygote / affects phenotype if dominant allele is absent ;						
	(b)	ger	ne / al	lele, on X chromos	ome / sex linkage ;			
		female, needs 2 RGC <u>alleles</u> / homozygous recessive / can be heterozygous ;						
		ma	le nee	eds 1 RGC <u>allele</u> ;			[2 max]	

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9700	04

(c) $1 - X^{R}X^{r} / Rr$;

 $4 - X^{R}Y / R / R^{\circ} / R$ -;

 $6 - X^{r}Y / r / r^{\circ} / r$ -;

$$7 - X^{R}X^{r} / Rr;$$

if X and Y not used then mark to max 3

[Total:8]

[4]

[2]

7 (a) (i) ref. wavelength

- 1 chlorophyll **a** peaks at <u>430</u>nm **and** chlorophyll **b** peaks at <u>450</u>nm ;
- 2 chlorophyll **a** peaks at <u>660</u>nm **and** chlorophyll **b** peaks at 635–640nm ;
- 3 ref. linking 400–500nm with blue light / ref. linking 600–700nm with red light ;
- 4 (both have) little absorption, between 500–600nm / in green light;
 A little absorption, chlorophyll a 450–600 and chlorophyll b 500–600;
- ref. light absorption
- 5 (both) peaks in blue light are higher than peaks in red light;
- 6 chlorophyll **b** higher than chlorophyll **a** in the blue end / chlorophyll **a** higher than chlorophyll **b** in the red end / AW ; **A** converse
- 7 comparative figures for light absorption to illustrate points 5 or 6; [3 max]

ignore units

- (ii) 1 absorbed light used for photosynthesis;
 - 2 higher rate of photosynthesis in red and blue light;
 - 3 action peak(s) / high rate of photosynthesis, correspond to absorption peak(s);
 - 4 blue / shorter wavelength, light has more energy / ora;
 - 5 not an exact match between absorption and action spectra (in middle region);
 - 6 role of carotenoids / accessory pigments, (in middle region); [3 max]
- (iii) they contain chlorophyll;

green / blue green / yellow green, light reflected ; [2]

(b) W – label line to stroma;

Y – label line to, granum / intergranal membranes ;

Pa	age 7	,		Mark Scheme	Syllabus	Paper
			GCE A	/AS LEVEL – May/June 2008	9700	04
(c)	1	light	not limiting;			
	2	muc	h, ATP / reduce	ed <u>NADP</u> , available ;		
	3	CO_2	is the limiting fa	actor;		
	4	beca	ause low conce	ntration CO_2 (in atmosphere) ;		
	5	more	e CO ₂ combine	s with RuBP ;		
	6	ref. r	rubisco ;			
	7	Calv	vin cycle / light i	ndependent stage ;		
	8	GP t	to TP;			
	9	more	<u>e</u> hexose produ	ced ;		
	10	ref. f	fate of hexose ;			[5 max]
						[Total:15]
8 (a)	(i)	sam	e, mean / mode	e;		
		narro	ower (5–35) ;	ignore height, curve should be sym	nmetrical	[2]
	(ii)	stab	ilising ;			[1]
	()		0,			
(b)	(i)	mea	n / mode, to lef	t of 20cm ;		
		narro	ower (0–35) ;	ignore height, curve should be sym	nmetrical	[2]
	(ii)	direc	ctional / evolutio	nany ·		[1]
				, ,		[']
	(iii)	fishiı	-			
		•	lation ;			
		AVP).			[2 max]
						[Total: 8]

Pa	ge 8		ark Scheme	Syllabus	Paper 04	
	GCE A/AS LEVEL – May/June 2008 9700					
(a)	1	reduced, NAD / FAD ;				
	2	passed to ETC ;				
	3	nner membrane / cristae	,			
	4	hydrogen released (from	reduced, NAD / FAD) ; R H2	2		
	5	split into electrons and pro	otons;			
	6	protons in matrix ;				
	7	electrons pass along, car	riers / cytochromes ;			
	8	ref. redox reactions;				
	9	ref. energy gradient ;				
	10	energy released ; R pr	oduced			
	11	protons (pumped) into inte	ermembrane space ;			
	12	proton gradient ;				
	13	protons pass through (pro	tein) channels ;			
	14	ATP synthase / stalked pa	articles;			
	15	ATP produced ;				
	16	chemiosmosis ;				
	17	electron transferred to oxy	/gen;			
	18	addition of proton (to oxyg	gen) to form water / (oxygen) re	educed to water ;	[9 ma	
		ndidate mistakenly writes king points 7, 8, 9, 10 and	about photosynthesis only allo 15 to 5 max	DW .		
(b)		<i>toplasm</i> NAD, becomes reduced /	accepts H;			
	20	during glycolysis ;	• •			
	<i>in plants</i> 21 pyruvate converted to ethanal ;					
	22	ethanal reduced ;				
	23	by reduced NAD ;				
	24	ethanol formed ;				
		imals	toto i			
		pyruvate converted to lact	lale;			
		by reduced NAD;				
	27	in, liver / muscles ;			[C	
	28	allows glycolysis to contin	ue;		[6 ma	
	allo	/ either 23 or 26				

	Page 9			Syllabus 9700	Paper			
			GCE A/AS LEVEL – May/June 2008	04				
10	(a)	endocrine						
	. ,	1	hormones;					
		2	chemical messengers; A chemicals that transfer infor	mation				
		3	ductless glands / (released) into blood ;					
		4	target, organs / cells ;					
		5	ref. receptors on cell membranes ;					
		6	example of named hormone and effect;					
		ner 7	<i>rvous</i> impulses / action potentials ; R electrical, signals / curi	rent				
		8	along, neurones / nerve fibres ; R nerves					
		9	synapse (with target) / neuromuscular junction ;					
		10	ref. receptor / effector / sensory / motor, neurones ;					
			ferences – endocrine slow effect / ora ;					
		12	long lasting effect / ora ;					
		13	widespread effect / ora ;					
		14	AVP ; e.g. extra detail of synapse		[8 max]			
	(b)	15	IAA / plant growth regulator ;					
		16	synthesised in, growing tips / apical buds / meristems ;					
		17	moves by diffusion ;					
		18	from cell to cell ;					
		19	also, mass flow / in phloem ;					
		20	stimulates cell elongation; R cell enlargement					
		21	inhibits, side / lateral, buds / growth ; A inhibits branch	ing				
		22	plant grows, upwards / taller; A stem elongates					
		23	IAA / auxin, not solely responsible ;					
		24	interaction between IAA and other plant growth regulator	s;				
		25	AVP ; e.g. role of ABA and lateral bud inhibition					
		26	AVP ; e.g. cytokinins antagonistic to IAA / gibberellins en	hance IAA	[7 max]			
					[Total: 15]			