CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9700/01
BIOLOGY
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	1

Question Number	Key	Question Number	Key
1	D	21	D
2	A	22	B
3	C	23	B
4	C	24	A
5	A	25	C
6	C	26	C
7	D	27	B
8	A	28	B
9	B	29	C
10	A	30	D
11	B	31	A
12	C	32	C
13	B	33	C
14	C	34	D
15	D	35	B
16	A	36	B
17	D	38	D
18	A	39	B
19	C	40	B
20	C		

TOTAL 40

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/02
BIOLOGY
Paper 2 (Theory 1)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	2

KEY

a semi colon ;	indicates a separation of marking points
an oblique line /	indicates alternative wording or acceptable alternative
R	means reject
A	means accept
AW means 'alternative wording'	
underlined with a straight line	accept this word only, no alternative word is acceptable
D	represents quality mark(s) awarded for diagrams, as indicated on the Mark Scheme
L	represents mark(s) awarded for labels on diagrams, as indicated on the Mark Scheme
Q	represents quality of expression and is used for marks awarded on free-response questions

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	2

Question

Expected Answers

Marks

1 (a) C, E, D, B; 1
(b) centromeres have divided/duplicated; R. split R. replicated (sister) chromatids/(daughter) chromosomes pulled/moved/ separate/migrate to (opposite) poles;
ref. to the spindle/microtubules/spindle fibres; R. fibres
(c) replication/DNA synthesis; assembly of nucleotides/polynucleotide (chain) formed; (alongside) old/original/both strands, act as template; by base/complementary pairing/ A-T and G-C; quantity of DNA doubles/two new double helices formed;
(d) production of genetically identical cells/genetically uniform cells/ identical DNA/maintains genetic stability/same number and kind of c-somes/no genetic variation;
[Total 7]

2 (a)
Award one mark per column. No penalisation for complete lack of all crosses (or all ticks) unless mixture of x and \checkmark missing as agreed

statement	emphysema	tuberculosis	obesity	rickets	smallpox
eliminated by vaccination	x	x	x	x	\checkmark
a worldwide infectious disease	x	\checkmark	x	x	\checkmark or x
a form of malnutrition	x	x	\checkmark	\checkmark	x
a deficiency disease	x	x	x	\checkmark	x
involves degeneration of lung tissue	\checkmark	\checkmark or x	x	x	x

[Total 5]

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	2

3 (a) \quad| Correct letter order on Ques |
| :--- |
| |
| |
| |
| |
| |
| C - nucleus; |
| D - Golochi apparatus; |
| |

R. process statements instead of letters
(b) secrete/release/produce/make antibodies;
A. immunoglobulins
R. memory cells unless linked to antibody production
(c) nucleus/nuclear envelope/nuclear membranes/nucleolus; no cell wall;
have organelles/named visible organelles; (golgi/mitochondrion/
RER) R. more organelles
larger (cell);
fixed ribosomes/ribosomes attached to E.R./no free
ribosomes;
[Total 7]

4 (a)	(i) shade in xylem; (complete xylem star must be shaded)	1
	(ii) shade in phloem; (A. shading of just one phloem group)	1
(b)	ref to bending/provide support/strength; R. lignin unqualified R. prevents collapsing	1
(c)	osmosis/diffusion; down water potential gradient/from high/less negative to low/more negative water potential/AW; (R. osmotic potential/conc. gradients less or more) through partially/selectively/differentially permeable membrane; R. semi-permeable	ax

(d) transpiration pull/cohesion-tension/cohesion-adhesion/ mass flow in xylem;
into spongy mesophyll (cells); many cell walls/surfaces/large surface area; evaporation of water (from damp walls); into (substomatal/intercellular) air spaces; diffusion of water vapour/water as a gas/described; (e.g. movement of water vapour from high to low conc.) through stomata/cuticle (to air/ atmosphere);
(ignore ref. to apoplast, symplast, vacuolar pathways)
[Total 9]

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	$\mathbf{2}$

5 (a) \begin{tabular}{ll}

(i) \& | haem; R. incorrect spelling |
| :--- |
| combines/binds with/carries/holds/takes up/transports oxygen; |

(ii) | soluble/polar/hydrophilic (on outside)/compact/spherical/curled/ |
| :--- |
| coiled/folded (into a ball)/metabolically active; |
| 4 polypeptides; | \& $\mathbf{2}$

\end{tabular}

(b) iron needed for haem/haem contains iron; less haemoglobin (made); R. less RBCs less oxygen transported/supplied/delivered (to cells/tissues); less respiration/respiration rate decreased; R.respiration less efficient/effective
$\max 3$
R. named muscle, e.g. biceps muscle
(d)
(i) 90%;

25\%; A. within range 23-25\% R. 23-26\%, 22-25\%
(N.B. Both \% need to be correct for one mark)

1
(ii) haemoglobin unloads/releases oxygen/dissociates, easily/readily/at higher ppO_{2} (in tissues/cells);
(whilst) myoglobin holds on to oxygen/is very stable/does
not dissociate easily/has a higher affinity for oxygen;
(so) providing a store/reservoir/reserve of oxygen;
(so will not) release oxygen until the pp/conc./tension of oxygen is low/during strenuous exercise;
so delaying anaerobic respiration;
max 3
(e) S-shaped curve to the right of \mathbf{H};
(N.B. curve should be S-shaped, start at 0, plateau out at between 90-98\% saturation, show 50\% plus saturation at pp of 6 kpa)
[Total 13]

6 (a) Two correct letters required for a mark for each column if list given; mark first 2 letters.

Alcohol	Caffeine	Nicotine	Heroin
U	S	S	U
V	T	T	Y
Y	Z	W	W
Z		X	

Page 5	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	2

(b) decrease in response to drug/effect of drug becomes less (intense);
decrease in sensitivity of receptors/more receptors are made; drug is metabolised/becomes part of body's metabolism; more drug necessary to achieve the same effect/sensation/euphoria; max 2
(c) award marks from any annotated diagrams

Either
inhibitor fits site other than active site/allosteric site; tertiary/3D structure or shape changes/any two bonds mentioned break; (ionic, van der Waals, hydrophobic, hydrogen, disulphide, covalent)
active site changes shape;
substrate no longer fits/binds/active site no longer complementary to substrate/E.S. complex not formed;

or

inhibitor fits permanently/irreversibly into active site;
substrate can no longer bind/substrate blocked/no E.S. complex formed;
increasing substrate has no effect;
$\max 3$
Either mark scheme as appropriate - do not mix marking points from both mark schemes

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9700/03
 BIOLOGY
 Paper 3 (Practical 1)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	3

Question Expected Answers 1 1
T1 results have increased;
T1 results have increased;
Mark
35-40 means correct; 1
45-50 means correct; 1
(b) Allow the yeast to get to the correcttemperature;1
Allow the gas to expand and vent/ contract and suck back; 1
(c) Correct ref. to results e.g. T1 higher; 1Increased kinetic energy ofmolecules/move faster;More collisions;1More collisions,1
Rate of diffusion of glucose into yeast; 1
(d) Two from:Explanation of control, i.e. yeast or noyeast/enzyme;eliminate effects of gas expansiondue to temp fluctuations;Number of bubbles produced by T2deducted from totals for T1;
(e) Three from:
Not alternate counting;
Keep at constant temperature;
Take more readings;
Control pH;
Measure volume of gas;
2 (a) Clear single lines (quality); 1
3 arms to drawing; 1
Nuclei drawn; 1
Red blood cells smaller than nuclei; 1Wall of alveoli not more than 3diameters of nuclei;1
3 correct labels from:
air space/alveolus; nucleus;cytoplasm; cell membrane; red bloodcells; epi/endothelium; alveolus wall;

Additional Guidance

REJECT unqualified rates of reaction. If T1 lower then ecf, i.e. accept correct ref. to table and denaturisation i.e. $\max 2$

IGNORE for better comparison/control/fair test

Allow reduce volume of reagents if qualified

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	2

(b) 4 from:

Procedure explained;
Random sample;
Repeat 3 or more times;
Calculate means;
Ratio calculated between 1:4 and 1:20;

Max 4
(10)

Paper Total 25

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A LEVEL

MARK SCHEME
MAXIMUM MARK: 50
SYLLABUS/COMPONENT: 9700/04
BIOLOGY
Paper 4 (Theory 2 (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	4

1 (a) top half of leaf/just below (upper) epidermis;
packed (densely);
long axis in line with incident light/AW;
2 max
(b) contain large numbers of chloroplasts/large amount of chlorophyll;
large vacuole; (only give if linked to next point)
chloroplasts (in cytoplasm) close to cell wall/cell membrane;
short diffusion pathway;
(cell) elongated/arranged to intercept (maximum) light;
thin (cell) wall;
ref. movement of chloroplasts;
3 max
(c) contains photosystems/PS1 and PS2/chlorophyll and accessory pigments/ reaction centres;
maintain carriers/receptors in position;
site of photophosphorylation/light reaction;
site of ETC;
ref. proton pumping/proton gradient;
large surface area;
produce ATP/ref. ATP synthase;
produce reduced NADP;
4 max
(d) ref. to Rubisco;
carbon dioxide combines with RuBP;
driven/powered by ATP;
and reduced NADP;
forms PGA;
2 max
Total: 11

2 (a) provides energy;
suitable examples;
e.g. muscle contraction, protein synthesis, DNA replication, cell movement, active transport
(b) substrate level phosphorylation
cytoplasm (in glycolysis); matrix of mitochondria (in Krebs cycle); oxidative phosphorylation inner membrane of mitochondria/cristae;
(c) oxidative phosphorylation more than substrate level phosphorylation; ref. to quantity, e.g. $32 / 34$ vs. $4 / 6$ per glucose;

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	4

(d) requires proton gradient produced by ETC; with no oxygen ETC does not occur/no electron flow;
NAD cannot be reformed/NADH cannot be oxidised; oxygen combines with electron/proton/oxygen final acceptor in ETC;

3 max
Total: 10

3 (a) A vesicles containing transmitter/acetylcholine/synaptic vesicle;
B presynaptic membrane;
C synaptic cleft/gap;
D post synaptic membrane;
E receptor/protein $/ \mathrm{Na}^{+}$gate;
(b) arrow pointing down;
(c) ref. low Ca^{2+} in synaptic knob/high Ca^{2+} outside knob;
action potential/depolarization causes opening of Ca^{2+} channels;
Ca^{2+} into synaptic knob;
causes vesicles to move towards presynaptic membrane;
causes vesicles to fuse with presynaptic membrane;
vesicle contents/transmitter/exocytosis into synaptic cleft/gap;
3 max
Total: 9

4 (a) metaphase;
II; (allow one mark for telophase and two marks for telophase 1)
(b) ref. spindles/microtubules shorten contract/pull/breakdown; centromeres divide;
choromatids (pulled) apart;
to opposite poles; chromosomes unwind/AW; nuclear membrane reforms;
ref. cytokinesis/cleavage;
4 max
(c) independent/random assortment;
of homologous chromosomes;
different combinations of parental chromosomes;
crossing over/chiasmata;
between chromatids of homologous chromosomes/non-sister chromatids; breaks up linkage groups/mixes alleles from parents; \mathbf{R} genes ref. to non-identical/genetically different gametes;

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	4

5 (a) phenotype is the feature/characteristic; results from interaction of genotype and environment on organism/ environment may alter the appearance of an organism;
genotype unaffected by environment; genetic characteristics inherited/passed on to offspring/ora/represents alleles possessed;
(b) artificial selection carried out by humans;
choose organisms with useful characteristics/benefit to humans; natural selection carried out by environment;
ref. survival (to breed);
ref. evolution;
(c) (i) length of DNA/sequence of bases/locus on a chromosome; coding for a characteristic/protein/polypeptide/enzyme;
(ii) alternative form of a gene; determining contrasting characters/controls one form of a character; occupies same locus;
ref. sequence of bases;
ref. dominance;
3 max
Total: 10

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE A LEVEL

MARK SCHEME
MAXIMUM MARK: 30
SYLLABUS/COMPONENT: 9700/05
BIOLOGY
Paper 5 (Practical 2 (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	5

Question

Expected Answers
F1 does not change/ ∞; F2 changes quickest/F3 $2^{\text {nd }}$ to change;
(ii) Blue;
(iii) F1 renal vein (plasma);

F2 urine;
F3 renal artery (plasma);
1 mark for each correct explanation, i.e.

F1 urea removed by kidney;
F2 high concentration of urea;
F3 low concentration of urea;
1
(b) Two from:
start all three at same time; replication; means of more precise pH measurement

2 (a) 2 cells only drawn; columnar; cells tapering; brush border drawn by single line; large nuclei almost cell width; 3 correct labels from brush border; nucleus; nuclear membrane; cell membrane; cytoplasm; max 1

Max 43 correct labels $=1$ mark
(b) Both circular/oval/angular/NOT columnar; circular nucleus;
Nucleus proportionately smaller than
(a);

Clear unbroken lines;
3 correct labels from: nucleus; nuclear membrane; chondrocyte; lacuna; intercellular chondrocyte; lacuna; intercellular
matrix; cytoplasm; cell membrane; $\max 1$

Marks

1

1

1

Max $2 \quad 3=2 \quad 2=1$
cor

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	5

(c) Two from:
brush border: no brush border;
columnar: angular or circular;
nucleus oval: circular;
cells side by side: cells scattered;
no matrix: cells separated by matrix; Max 2
(10)

3 (a) Three from:
Ref to fan;
Ref to support;
Ref to under water;
Ref to acclimatisation;
Clip closed;
Capillary tube contains water;
Tight fit/no leaks;
Max 3
(b) Two from:

Light;
Temperature;
Humidity; Max 2
(c) Three from:

Time measured;
Scale read;
Alter fan speed/change fan distance;
Replication;
Measure leaf area;
Ref to reset apparatus qualified;
Equilibrate if not given in (b); Max 3
(d) $\quad \pi r^{2} \mathrm{~h}=2$ marks;

Or length X;
1
Area of capillary;
1

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

GCE A LEVEL

MARK SCHEME
MAXIMUM MARK: 50
SYLLABUS/COMPONENT: 9700/06
BIOLOGY
Paper 6 (Options (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

Option 1 - Biodiversity

1 (a) (existence of many) different species; with (a wide range of) different, genes/alleles; (many) different, habitats/ecosystems;
$\max 2$
(b) has a very high, species diversity/biodiversity; is being lost rapidly; may be a carbon sink/ref. to global warming; loss may affect rainfall patterns; loss may affect, soil erosion/flooding;
(c) (i) more variety of plants in system A than (B, C or) D ;
ref. to different levels of vegetation in original forest (canopy, understory);
therefore greater variety of habitats for birds;
greater variety of food sources for birds; ref. pesticides;
$\max 2$
(ii) more coffee trees grown in a (unit) area;
no competition with other trees;
better availability of light;
loss of habitats for pests; increased use of fertilisers;
increased use of pesticides;
$\max 2$
(iii) populations of pests (on coffee trees) can become very high in D; plentiful food source for them;
fewer bird species to predate them/fewer predators;
$\max 2$
(d) nitrogen fixation;
bacteria/Rhizobium/root nodules, provide nitrate/ammonium;
(e) pay premium for coffee grown, in system A /in sustainable way; provide, grants/subsidies, to coffee farmers to use system A; encourage/educate/inform, consumers to encourage them to buy coffee grown in system A;
find uses for the non-coffee trees in system A;

2 (a) A operculum;

B gill bar;
2
(b) (each gill arch has) many (gill) filaments; each filament has many (gill) lamellae; which provides large surface area; distance between water and blood very small; filaments interlocked/packed closely, to slow water flow;
(c) counter-current;
partial pressure/concentration, of oxygen in blood always lower than in water next to it or always a diffusion gradient between water and blood;
water progressively loses oxygen as it passes through the gills;

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

if both flowed in the same direction then blood could only become as saturated as outflowing water; this arrangement takes more oxygen from the water; increases length/surface area over which exchange occurs;
$\max 3$
(d) (i) volume of, buccal cavity/mouth, increased;
by lowering, jaw/floor of mouth;
while operculum is closed;
this reduces pressure (below that of surrounding water) so water flows in;
mouth closed and, jaw/floor of mouth, raised;
increases pressure in mouth;
operculum open;
so water pushed out through the gills; $\quad \max 4$
(ii) as swimming speed increases, rate of pumping increases;
because more oxygen required;
for (aerobic) respiration in (swimming) muscles;
rate of pumping, decreases/remains constant, between 0.4 and 0.6
ms^{-1};
stops completely at $0.75 \mathrm{~ms}^{-1} /$ just before $0.8 \mathrm{~ms}^{-1}$;
because (only) ram ventilation used now/water flowing over gills as a result of swimming;

3 (a) (i) named virus + appropriate structure for it;
(core of) RNA/DNA/nucleic acid;
surrounded by, capsid/capsomeres;
(capsid contains) protein;
size between 10 nm to 300 nm ;
detail for named virus;
for example
T_{2} - tail fibres/baseplate/other
HIV - reverse transcriptase
herpes - envelope/lipoprotein covering
(ii) (e.g. bacteriophage, adenovirus)

1 cell recognition/interaction between viral protein and component of host cell membrane;
2 virus/nucleic acid/DNA, enters cell;
3 normal cell activities stopped;
4 host cell DNA broken down (by viral enzymes);
5 viral DNA used, for transcription/to form mRNA;
6 viral proteins made;
7 viral DNA replicates;
8 new viruses assembled;
9 viruses burst from cell/cell lysis;

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(e.g. HIV, other retrovirus)

1 cell recognition/interaction between viral protein and component of host cell membrane;
2 RNA and reverse transcriptase enter cell;
3 viral DNA made using viral RNA as template;
4 viral DNA incorporated into host DNA;
5 viral DNA used, for transcription/to form mRNA;
6 viral proteins made;
7 viral DNA used to produce RNA component of virus;
8 new viruses assembled;
9 viruses burst from cell/cell lysis;
$\max 7$
(iii) virus acellular/bacterium is a cell;
virus, has no cell surface membrane or may have envelope/bacterium (always) has cell surface membrane;
virus has no cell wall/bacterium does;
virus is (much) smaller than bacterium;
virus has either DNA or RNA/bacterium has both;
viral, DNA/RNA, may be single stranded or is linear/bacterial DNA is double-stranded or circular;
virus has no ribosomes/bacterium does;
virus does not, respire/feed/grow/excrete/have metabolic reactions, (while outside host cell);
virus can only reproduce inside host cell;
$\max 7$
[Total 20]
(b) (i) Absence of features can be implied
chordates have notochord (at some stage), arthropods do not; chordates have, gill/pharyngeal, slits (at some stage), arthropods do not;
chordates have hollow nerve cord, arthropods have solid nerve cord;
chordates have dorsal nerve cord, arthropods have ventral nerve
cord;
chordates have closed blood system, arthropods have, open system/haemocoel;
chordates have endoskeleton, arthropods have exoskeleton; chordates have postanal tail, arthropods do not;
$\max 6$
(ii) three body layers;
ectoderm on outside, mesoderm, endoderm on inside;
coelom is cavity; within mesoderm;
somatic mesoderm on outside and splanchnic mesoderm inside;
coelom is filled with fluid;
coelom is lined by peritoneum (in vertebrates);
mesentery connects, peritoneum/the two layers of mesoderm;

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(iii) isolates muscles of gut from muscles of body wall; which provides advantages in, locomotion/digestion;
provides space for development of organs; example; (not heart or lungs) can provide specialised cavities (such as pleural/pericardial/abdominal); within which fluid composition can be regulated;
(fluid within coelom) can act as a hydrostatic skeleton;
by providing incompressible material against which muscles can act; detail of role of coelom in annelid locomotion;
(fluid within it) can be used as a transport system;
fluid moved by cilia;
provides fluid for excretion (of metabolic waste);
(in e.g. annelids) provides a site for gamete maturation;
and for embryo development;

Page 5	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

Option 2 - Biotechnology

1 (a) use of living organisms/biological agents/animals/plants/cells/ microorganisms;
to, produce useful products/produce foods/produce medicines/ produce chemicals/process other materials/treat waste; in fermenter/culture vessel/AW;
$\max 2$
(b) ref. availability of information;
ref. public knowledge/understanding/awareness (of information);
ref. complexity of issues;
ref. actual/potential benefits importance;
ref. actual/potential risks;
ref. perceptions of benefit/risk;
ref. political/commercial pressures;
ref. misinformation/AW;
(c) (i) initial levels, normal higher than GM/ora;
normal has a more rapid rise from 0-4 days/ora;
normal reaches much higher level at 4/8 days/ora;
normal stays same level from (approx.) 4-8 days/while GM rises slightly;
normal drops again after 7/8 days/GM continues to rise after 7/8 days;
(ii) idea of - start later;
idea of - happen slower;
2
(iii) not ripe/green when picked;
long shelf life/AW;
will not over-ripen;
do not ripen too quickly;
do not become squashy/firmer;
AVP;
(iv) ref. moral principles/personal choice/values of society/AW;
ref. to actual/potential/perceived advantages/named advantage;
ref. to actual/potantial/perceived risks/hazards/named risk/hazard;
AVP.

Page 6	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

2 (a) (i) stimulates immune system; without causing (severe) infection; made from, killed organisms/fragments of organisms; made from, weakened/attenuated organism; with antigens;
(ii) attentuated/weakened organism can survive attentuation/still have ability to cause disease;
or regain pathogenicity/regain ability to cause disease;
very rare/AW;
ref. allergy to vaccine/hypersensitivity;
ref. side effects;
named side effect linked to appropriate vaccine;
chance of serious injury or death;
but chance of dying of disease much greater;
$\max 4$
(iii) virus grown in living cells;
e.g. animal/named animal/hen embryo;
attenuated/weakened;
by, treatment with chemicals/high temperatures/alien conditions for growth/AW;
subcultured many times/AW;
ref. harvest;
ref. purification;
$\max 4$
(b) (i) vaccination/immunisation;
for (almost) all children;
detail (e.g. type of vaccine/introduced before 1980);
OR
better treatment;
details (e.g. isolation/antibiotics);
$\max 2$
(ii) better vaccine/AW;
more people vaccinated/AW;
better antibiotics/treatment;
cheaper antibiotics/treatment; better public awareness;
AVP.

Page 7	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

3 (a) (i) hydroponics;
plant roots grown in/in contact with water;
not usually submerged;
will tolerate almost freezing;
aeroponics;
misting plant roots/AW;
ref. cycles/continuous;
run off collected/reused;
ref. nutrient solution;
grown indoors/AW;
use virus tested cuttings AW;
ref. artificial light;
soil based media must be washed off/clean plants;
ref. optimum temperature ($15^{\circ}-18^{\circ} \mathrm{C}$);
ref. effects of low temperatures (e.g. flowers liable to split/weaker flower stems/slower growth);
ref. effect of higher temperatures (e.g. denaturation of enzymes); requires $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ levels to be high to establish plants;

N supplied as, nitrate/not ammonium salts;
ref. pH around 6/below 7;
ref. low humidity/need for ventilation;
AVP (e.g. CaNO4 requirements decrease during flowering/wider spacing between cuttings reduces disease);
(ii) (indoor culture so)
not ruined by pests/easier pest control;
no pesticides;
no bad weather/AW;
can be grown in adverse climates/AW;
avoids poor soil/variability of soil;
no weeds/no herbicides needed;
avoids, poor drainage of soils/over watering/AW;
higher oxygen levels around roots/AW;
can be grown out of season/any time of year/when profit is biggest/AW;
grown where land is in short supply/maximises land use/AW;
ref. potential for lower labour costs;
AVP (e.g. can easily supply more carbon dioxide/maximise photosynthesis/optimise conditions);
$\max 6$

Page 8	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(iii) Callus culture:
named specific example of source;
aseptic transfer;
ref. sterile medium/conditions;
with named plant growth regulator;
ref. cell division/mitosis;
including cells that may not normally divide;
each (callus/sample/cell) capable of forming a new plant;
genetically identical to/clone of;
the source material/each other;
section cut;
detail (e.g. from suitable part of plant, e.g. hypocotyl/surface sterilised);
(callus is) mass of undifferentiated cells/aggregate of cells;
solid medium;
detail (e.g. agar);
use (e.g. propagation);
detail (e.g. of cheap/virus free/GM/ cloned plants;
AVP;
AVP;

Suspension culture:

named specific example of source;
aseptic transfer;
ref. sterile medium/conditions;
with named plant growth regulator;
ref. cell division/mitosis;
including cells that may not normally divide;
each (callus/sample/cell) capable of forming a new plant;
genetically identical to/clone of;
the source material/each other;
separation/dispersal of cells;
detail (e.g. gentle shaking/cellulase);
(culture of) single cells/small clumps of cells;
liquid medium;
detail (e.g. medium is entirely synthetic/complex);
use (e.g. production);
detail (e.g. of metabolites/GM proteins/AW;
AVP;
AVP;

Protoplast culture:

named specific example of source;
aseptic transfer;
ref. sterile medium/conditions;
with named plant growth regulator;
ref. cell division/mitosis;
including cells that may not normally divide;
each (callus/sample/cell) capable of forming a new plant;
genetically identical to/clone of;
the source material/each other;
cell walls removed;

Page 9	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

detail (e.g. by enzyme action/cellulases/pectinases);
(culture of) single/naked cells;
liquid medium
detail (e.g. with same water potential as cells);
use (e.g. physiology/genetic investigation/making hybrids
detail (e.g. ref. specific investigation heterokaryon);
AVP;
AVP;
[20]
(b) (i) uses Saccharomyces;
cerevisiae/carlsbergensis;
malting barley;
grapes;
under moist conditions/soaked;
crushed;
causes germination of grain;
enzymes/amylases hydrolyse starch;
to extract sugars;
dry in kiln;
crush dried grain/milling/grist;
mashing/mix crush grain with water;
allow further breakdown of starch;
add hops;
for flavour;
and sterilise wort;
add yeast;
fermentation;
produce CO_{2} and alcohol;
(ii) new strains of yeast;
by genetic engineering/named process;
improved yield/tolerate higher alcohol content;
top and bottom fermenters;
add amylases/gibberellins;
reduces time to convert starch to sugars;
produce low carbohydrate beers;
unmalted barley and amylases/glucanases/proteases replace malt;
marking points for wine;

Page 10	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(iii) use Fusarium;
grown on flour waste/named medium;
other nutrient sources, e.g. glucose/minerals/ammonia; continuous aseptic culture;
air lift fermenter;
heat exchanger;
mycelium harvested;
centrifuged;
water content reduced;
RNA reduced;
by ribonucleases/heating to $60-70^{\circ} \mathrm{C}$;
pressed/processed;
flavour added;
colour added;
high protein content;
no cholesterol.

Page 11	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

Option 3 - Growth, Development and Reproduction

1 (a) (i) A plasma membrane/cell surface membrane
B acrosome
C nucleus
D mitochondrion half marks rounded up;
(ii) A allows attachment to receptors in zona pellucida; fuses with oocyte membrane;
max 1

B enzyme digests path between follicle cells; enzyme digests zona pellucida;
$\max 1$
(b) (i) fresh/not frozen maximum/peak/80\% at 24 hours; at $24 \mathrm{~h} 80 \%$ v. 26%;
frozen highest/c. 58\% at 0 hours and falls with time; after 48 h fresh still penetrate 40% of oocytes v. frozen only 10%; A any valid figures of comparison
$\max 2$
(ii) need time for capacitation;
removal of, glycoprotein/plasma protein;
accounts for increase in ability to penetrate oocytes between 0 and 24 hours;
decrease in ability 24-48 hours from lack of, nutrients/energy;
$\max 3$
(iii) non-lethal/slight, damage;
during, freezing/thawing;
alters membrane/speeds up capacitation;
ref. to capacitation having already occurred;
during time delay between ejaculation and freezing;
$\max 2$
(c) increase in, enzyme/nitric oxide synthase, activity in sperm; on contact with zona pellucida;
enzyme active after sperm penetrates oocyte; results in increase in nitric oxide concentration in oocyte; leads to increase in calcium ion concentration in oocyte;
$\max 4$

Total: 15

2 (a) Any three of the following:
petals, absent/small/inconspicuous/green/dull-coloured; stamens, flexible filament/hang outside flower/anthers versatile; stigma, feathery/hangs outside flower; pollen, much/small/light/smooth (non-sticky); no credit for structures that are not present such as 'no nectary'
max 3

Page 12	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(b) (pericarp) becomes, more fleshy/other possible change; growth/swells; colour change; increase in, attractants/sugars/scent;
$\max 3$
(c) needs knowledge of:
undifferentiated/meristematic, cells in, cutting/other propagule;
stimulated by plant growth substances/plant growth regulators;
auxin/cytokinin;
form adventitious roots;
ref. tissue culture;
$\max 3$
(d) asexual reproduction;
genetically identical/clone;
original susceptible so all susceptible to same pathogen; only change via mutation;
$\max 3$
(e) meiosis fails;
in pollen mother cell/embryo sac mother cell; problem, in synapsis/when homologous chromosomes pair; in prophase 1 ; crossing over between, three chromosomes/six chromatids, results in tangle;
$\max 3$
Total: 15

3 (a) (i) absolute growth rate: also called actual growth rate; measure of how rate of growth varies with time; plot of increase in parameter in unit time against time; e.g. kg per year plotted against year/(dm/dt) against (t)/other e.g.; useful for showing, when growth is most rapid/how rate changes with time;
relative growth rate: also called specific growth rate;
takes into account existing growth;
absolute growth rate divided by parameter;
e.g. change in mass in one year divided by mass at beginning of year ($\mathrm{d} m / \mathrm{d} t$. 1/m);
shows growth rate relative to size of organism;
(ii) suitable example; (that will allow for samples over time)
large number of organisms;
in identical conditions;
e.g. of condition (e.g. temperature/water supply/humidity/nutrients);
second e.g. of condition;
samples taken at regular intervals;
randomly;
organism separated from medium;
dried in oven/other suitable conditions;
cooled in desiccator;
repeat to constant mass;
average dry mass;
$\max 8$

Page 13	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(iii) problem of allometry;
single dimension may not reflect growth in different dimension;
e.g. may be long but thin/other e.g.;
problem instars;
fresh mass/wet mass easily altered;
(plants) by water supply/transpiration/environmental conditions;
(animals) by, ingestion/egestion/excretion;
such gains/losses not true growth;
$\max 6$
Total: 20
(b) (i) link between nervous system and endocrine system;
stimulates pituitary gland;
to release specific hormones;
via releasing factors;
small peptides;
travel in, blood/portal vessels;
e.g. GnRF for pituitary to release, $\mathrm{FSH} / \mathrm{LH}$;
e.g. TRH for pituitary to release TSH;
involved in negative feedback;
e.g. negative feedback; (oestrogen/progesterone/thyroxine)
$\max 6$
(ii) anterior lobe;
growth hormone (GH)/somatotrophin, from anterior lobe;
ref. somatomedin from liver;
stimulates protein synthesis;
important for growth of, long bones/arms and legs;
TSH from anterior lobe;
stimulates thyroxine secretion;
FSH from anterior pituitary;
stimulates development of ovarian follicle;
stimulates secretion of oestrogen;
ref. secondary sexual charcteristics in female;
stimulates spermatogenesis;
LH (ICSH) from anterior pituitary;
stimulates ovulation;
stimulates formation of corpus luteum;
stimulates secretion of progesterone;
stimulates secretion of testosterone;
ref. secondary sexual characteristics in male;
FSH and LH control menstrual cycle;
$\max 8$
(iii) secretes, thyroxine $/ \mathrm{T}_{4}$;
secretes, triiodothyronine $/ \mathrm{T}_{3}$;
target $=$ respiring cells/increase in respiration rate;
controls, basal metabolic rate/BMR;
switches on transcription;
stimulates protein synthesis;
stimulates brain development;
stimulates growth;
especially of skeleton;
ref. temperature regulation;

Page 14	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

Option 4 - Applications of Genetics

1 (a) reduces genetic diversity; alleles lost; increases homozygosity/decreases heterozygosity; accumulation of deleterious recessive alleles;
(b) (i) 1430-1500;
(ii) neither A nor B can self-pollinate; stigma not receptive when own pollen released; stigma not in appropriate position when own pollen released; neither can be pollinated by another plant of the same phenotype; because behaviour synchronous;
A pollinates B in morning and B pollinates A in afternoon; max 4
(c) (i) $\eta=1$;
(ii) probability $=>0.1$;
(iii) difference from expectation is not significant; because > than 0.05/1 in 20;
ratio of phenotypes is $1: 1$;
observed difference due to chance;
$\max 2$
(iv) unambiguous symbols identified;

Aa ;
aa;
[A correct answer based on co - dominant situation]

2 (a) (i) thick/dehydrated, mucus builds up in lungs;
and gut;
bacterial infections in lungs;
scar/damage, lungs;
mucus blocks secretion of digestive enzymes (from pancreas)/
impaired digestion;
infertility;
$\max 3$
(ii) recessive allele;
autosomal/chromosome 7;
homozygote recessive = sufferer;
heterozygote = carrier;
correct statement re inheritance;
[e.g. 1 in 4 chance from 2 carrier parents]
$\max 3$
(iii) large number of different mutations;
each test specific;
DNA has different, code/base sequence; probe binds to specific/complementary sequence;

Page 15	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(b) (i) study of ion transport through cell membrane; if no CFTR/protein (produced and put into cell membrane) then no transport;
(ii) inability to transport $\mathrm{HCO}_{3}{ }^{-}$;
change in transport ratio;
transport ratio < 0.1: 1.0;
increase in acidity/decrease in pH ;
ref. effect on mucus;
$\max 3$
(iii) poor digestion of protein;
lipid;
starch;
malnutrition;
ref. to effect on production of, insulin/glucagon;
$\max 2$
Total: 15

3 (a) (i) to alter phenotype of domesticated animals or plants; trait of, use/value, to man.

Allow following examples of use:
quantitative agricultural plant improvement; quantitative agricultural animal improvement; qualitative agricultural improvement (plant or animal);
ornamental example in plants;
ornamental example in animals;
other example; (i.e. sporting, etc.)
$\max 6$
(ii) plant without resistance crossed with resistant plant;
offspring 1 seeds sown;
offspring 1 plants challenged by disease/AW;
resistant offspring 1 interbred;
selection and interbreeding continued for many generations;
resistant offspring 1 backcrossed to parent;
for background genes;
for traits other than resistance;
selection and backcrossing continued for many generations;
resistant parent, same species/primary (or secondary) gene pool;
resistant parent, different species/tertiary gene pool;
practical detail 1;
practical detail 2; [male sterility/removal of anthers/bagging/pollination] gene bank/landrace/wild species;
$\max 8$
(iii) orthodox seeds;
seeds dehydrated;
stored at $-20^{\circ} \mathrm{C}$;
storage life doubled by $5^{\circ} \mathrm{C}$ (A approx.) reduction in temperature;
storage life doubled by 2% (A approx.) reduction in humidity;
germination tests every 5 years;
recommended threshold value $=85 \%$ germination;
then seeds grown and fresh seed collected;
recalcitrant seeds cannot be dried and frozen;
$\max 6$
Total: 20

Page 16	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9700	6

(b) (i) linkage

2 or more genes on same chromosome;
do not assort independently in meiosis;
inherited together;
number of linkage groups = number of pairs of homologous
chromosomes/haploid number of chromosomes;
genes closer together less likely to be separated by crossing-over;
crossing-over
prophase meiosis I;
during synapsis;
chromatids of a bivalent break;
rejoin with non-sister chromatid;
exchange between paternal and maternal chromatids;
of alleles;
diagram;
ref. chiasma;
ref. cross over value; [max 5 on c-o]
genes closer together less likely to be separated by crossing over;
max 8
(ii) six loci; [A 4 loci]

A, B, C, DP, DQ, DR; [A A, B, C, D]
tightly linked/rarely separated by crossing over;
inherited as a unit;
haplotype;
chromosome 6;
very large number of alleles;
hence very many different combinations in the population;
child receives one haplotype from mother and one from father;
probability of two siblings sharing one haplotype $=0.5$;
probability of two siblings with identical haplotypes $=0.25$;
max 6
(iii) HLA loci code for (glyco)proteins;
at cell surface/in plasma membrane;
recognition markers/self or not-self markers;
act as antigens;
transplant from unmatched donor rejected;
ref. immune system/immune reaction;
detail of immune system; [antibodies/T cells]
some HLA antigens induce a greater reaction than others;
ref. immunosuppression;
ref. ABO groups;
red cell antigens and plasma antibodies;
detail ABO mismatch;
ref. 'universal donor'/‘universal recipient';
max 6
Total: 20

