AQAD

H

(GCSE Maths
 Specimen Assessment Materials

If you'd like to discuss any aspect of our
Specimen Assessment Materials do give us a call on 01619573852.

This commentary highlights some of the key aspects of our specimen papers and shows the strategy behind our clean and clear approach to assessment.

There are a number of features common to all of our papers for this new specification. Our aim is to provide students with a fair opportunity to demonstrate their knowledge and understanding. Some of the ways we're working to achieve this are:

Clear language and layout

We have already removed unnecessary words from our recent exams, and have provided more space between questions to avoid 'frightening' students as they turn the page. These principles apply in this new specification.

Settling students from the start

In each paper, about 8 marks (10\%) will be allocated to multiple choice questions. Each paper starts with four of these. They help settle students into the exam, but they are not easy marks. Students will be able to build confidence by giving an answer, but the 'wrong' options will often highlight inappropriate methodology or approach. Including these questions allows us to test a greater breadth of content across our examinations.

Formulae provided as they are required

There are no formulae sheets at the front of our papers. The Department for Education (DfE) requirements mean that students must know certain formulae. These include the trigonometry formulae, the quadratic formula and the formula for the area of a trapezium. A full list of the 'prescribed' formulae is an appendix to the specification. When a formula is required, and we are able to provide it, we will put this in the question, rather than challenging students to remember that they have a formulae sheet.

Gradual ramping of demand as the paper progresses

The demand of all AQA Maths papers increases steadily as students work through the paper.

- The first half of each tier F paper should contain many questions where students likely to achieve grades 1 and 2 can show their knowledge. The second half of each tier F paper will focus on questions that are designed to discriminate between grades 3,4 and 5 , many of which will be common with tier H .
- The first half of each tier H paper will focus on grades 4,5 and 6 , with at least 20 marks common with tier F. The second half of each tier H paper is designed to challenge and discriminate between the highest achieving students, targeting grades 7,8 and 9 .

Appropriate marks for each question

Some questions now have fewer marks than they had in the past. This is a deliberate approach based on what we have learned from performance data of current questions and the approach taken in other high achieving countries. This also reflects the changes in assessment objectives. We are very confident that we can assess the full breadth of content and skills in 80 mark papers, ensuring that every mark counts and is focussed on what we want to test.

We also don't want to hide the most accessible AO1 marks behind more difficult AO2 and AO3 marks so we will minimise these where possible, allowing us to ask more single mark AO1 questions elsewhere.

Assessment objectives

	Weighting	
Assessment objectives	Higher	Foundation
Use and apply standard techniques. Students should be able to:	40%	$5 \bigcirc \%$
- accurately recall facts, terminology and definitions		
- use and interpret notation correctly		
- accurately carry out routine procedures or set tasks requiring multi-step solutions		
A02 Reason, interpret and communicate mathematically. Students should be able to:	30%	25%
- make deductions, inferences and draw conclusions from mathematical information		
- construct chains of reasoning to achieve a given result		
- interpret and communicate information accurately		
- present arguments and proofs		
- assess the validity of an argument and critically evaluate a given way of presenting information		
Solve problems within mathematics and in other contexts. Students should be able to:	30%	25%
- translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes		
- make and use connections between different parts of mathematics		
- interpret results in the context of the given problem		
- evaluate methods used and results obtained		
- evaluate solutions to identify how they may have been affected by assumptions made		

Paper 1 Higher Tier

Paper 1 illustrates the consistent approach to the opening of papers at both tiers with four multiple choice questions - higher tier assessment is obviously more challenging, but we still feel it is important that the earliest questions are designed to settle students allowing them to see familiarilty of style when they turn over that first page in the examination. We recognise that Higher students suffer from examination fear at least as much as Foundation students and we want to ease them into the papers at this tier too.

GCSE
 MATHEMATICS
 (8300/1H)
 Paper 1 Higher tier

Specimen 2015
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments

You may not use a calculator

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

1 (a) Circle the smallest number.
2.3
2.3
2.33
2.03

1 (b) Circle the largest number.
2.3
2.3
2.33
2.03

2 Here is a sequence.
40
35
30
25
20

Circle the expression for the nth term of the sequence.
$5 n+35$
$5 n-45$
$45-5 n$
$n-5$

3 Which of these is not a square number?
Circle your answer.
4×10^{2}
4×10^{6}
9×10^{3}
9×10^{4}
$4 \quad$ Work out $\quad 64.32 \div 0.12$
\qquad 4 4
\qquad
\qquad
\qquad

Answer

Turn over for the next question

[^0]5 The scatter graph shows the number of driving lessons and the number of tests needed to pass by 10 people.

Number of tests needed to pass

5 (a) Describe the correlation.
Circle your answer.
strong positive weak positive weak negative strong negative

5 (b) Use a line of best fit to estimate the number of tests needed to pass by a person who has 50 lessons.
[2 marks]

Answer

5 (c) Meera says,
"I can use the trend to predict the number of driving tests needed to pass for any number of driving lessons."

Comment on her statement.
\qquad
\qquad
\qquad
$6 \quad$ Which of $\frac{2}{5}$ or $\frac{5}{8}$ is closer in value to $\frac{1}{2}$?
You must show your working

Answer

Turn over for the next question

7 A shape is made from rectangles.
7 (a) On the diagram below shade an area represented by the expression $\mathrm{ad}+c d$

7 (b) On the diagram below shade the area represented by the expression $d(a+2 c)$

7 (c) Write down an expression for the area of the whole shape.

Answer

$8 \quad$ Circle the value of $\quad \cos 30^{\circ}$
$\frac{1}{\sqrt{3}}$
$\frac{1}{2}$
$\frac{\sqrt{3}}{2}$
$\frac{2}{\sqrt{3}}$

Turn over for the next question

$9 \quad$ Alan, Ben and Carl ran a 1000 metre race.
The distance-time graph shows the race.

9 (a) Who won the race?
Give a reason for your answer.

Answer

Reason

9 (b) Describe the race.

Turn over for the next question

10

$$
\begin{aligned}
2 x+3 y & =15.5 \\
x+y & =6
\end{aligned}
$$

Work out the values of x and y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $x=$ $y=$

11 Five integers have
a mode of 6
a median of 8
a mean of 10
What is the greatest possible range of the five integers?
You must show your working.

Answer

12 Write $2(7 x+4)-4(x+6)+1$ in the form $a(b x+c)$
where a, b and c are integers and $a>1$

Answer

Turn over for the next question

13 Here is a map of France.

Scale: 1 cm represents 80 km

(i)
Q13 is a development of a Foundation question,
but is rather more demanding. Notice that the wording of part (b) is almost identical to that
of Assessment Objective AO3.5. In this case the
assumptions are given, but questions may ask students to make and evaluate their own assumptions. The benefit of using the language of the Assessment Objective is that we can replicate this in the future so students know what we are asking, rather than changing the language and casting doubt.

13 (a) Estimate the time it would take to drive from Paris to Marseille.
Assume

- the road is straight
- an average speed of $100 \mathrm{~km} / \mathrm{h}$

13 (b) Comment on how each assumption affects the accuracy of your estimate.

Assumption 1
\qquad
\qquad

Assumption 2

14 The pilot of an aircraft wants to fly from A to D.
The aircraft flies from A to $E, 1^{\circ}$ off course.
Not drawn accurately

14 (a) The distance $B C$ is 1 mile.
Work out the distance $D E$.

14 (b) How should the aircraft have turned at C to fly directly towards D ?
Tick a box.

15 The shape is rotated 90° clockwise about point A.
It is then enlarged by scale factor -2 , centre B.
Draw the final shape on the diagram.

16 Rearrange $y=\frac{4-3 x}{x-5}$ to make x the subject.
[4 marks]

Answer

17 The diagram shows a rectangle inside a semicircle.
The rectangle has dimensions 16 cm by 6 cm

Work out the shaded area.
Give your answer in terms of π.

18 Two straight lines are shown.
B is the midpoint of $A C$.
$T B: B S=2: 3$

Work out the coordinates of T.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

Answer (\qquad , \qquad)
(i) Q18 is similar at first glance to a Foundation question (1F Q26), but is significantly more demanding and designed to discriminate at the highest grades. The question also demonstrates that ratio and proportion can be assessed in different ways, avoiding repeated testing of fractions and percentages.

19 A cuboid has dimensions $x \mathrm{~cm}, x \mathrm{~cm}$ and $y \mathrm{~cm}$

x is increased by 10%
y is decreased by 20%
Work out and describe the percentage change in the volume of the cuboid.

Answer
$20 \quad$ Circle the value of $\quad 9^{-\frac{1}{2}}$
[1 mark]
$\begin{array}{llll}\frac{1}{81} & \frac{1}{3} & -3 & -4 \frac{1}{2}\end{array}$

21 Expand and simplify $(2 x+5)(2 x-5)(3 x+7)$

22 Write $\frac{26}{\sqrt{2}}-\frac{12}{\sqrt{18}}+2 \sqrt{50}$ in the form $a \sqrt{2}$ where a is an integer.
[4 marks]
\qquad

Answer

[^1]23 (a) The graph of $y=\sin x$ is shown for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ On the grid sketch the graph of $\quad y=\sin x-1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

23 (b) The graph of $y=\sin x$ is shown on the grid for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ On this grid sketch the graph of

$$
y=-\sin x \text { for } 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

23 (c) On this grid sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

Turn over for the next question

24 A bag contains n beads.
One bead is black and the rest are white.
Two beads are taken from the bag at random.

24 (a) Show that the probability that both beads are white is $\frac{n-2}{n}$
\qquad \longrightarrow
\qquad
\qquad

24 (b) The probability that both beads are white is greater than 0.9
Work out the least possible value of n.
\qquad
\qquad
\qquad
\qquad 1
\qquad

Answer

[^2]$25 \quad A B C D$ is a parallelogram.
$A B E$ is a straight line and $A B: B E=3: 2$
$B C$ and $E D$ intersect at F.
$$
\overrightarrow{A B}=\mathbf{a} \text { and } \overrightarrow{A D}=\mathbf{b}
$$

Not drawn accurately

25 (a) Work out $\overrightarrow{E D}$ in terms of \mathbf{a} and \mathbf{b}.
Give your answer in its simplest form.

Answer

25 (b) Deduce $\overrightarrow{E F}$ in terms of \mathbf{a} and \mathbf{b}.

Q25 concludes with an AO2
deduction question, which could have been asked as a single question for 4 or 5 marks. However, we are keen to include AO1 question parts even at this late stage of the
Higher paper, the question has been
structured so that answering part (a)
should assist students as they tackle part (b).

Answer

END OF QUESTIONS

Paper 2 Higher Tier

Formal proof is only required (under A02) in Higher tier. Q21 is a good example of how this will appear in our papers. We know that proof is a demanding skill requiring clear steps with reasons given at each stage. It is important that students understand and can deal with the extra demand of proof over and above the less demanding 'show that' style of question.

GCSE
 MATHEMATICS
 (8300/2H)
 Paper 2 Higher tier

Specimen 2015
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

1 Which of these is used to work out density? Tick a box.
mass \times volume
mass ${ }^{2} \times$ volume
mass \div volume
volume \div mass

\square

2 Circle the fraction equivalent to 2.375
$\frac{23}{75}$
$\frac{9}{4}$
$\frac{19}{8}$
$\frac{75}{23}$
$3 \quad$ Circle the equation of the x-axis.

$$
x+y=0 \quad x-y=0 \quad x=0 \quad y=0
$$

4 The angles of a quadrilateral are $140^{\circ}, 80^{\circ}, 60^{\circ}$ and 80° What type of quadrilateral could it be? Circle your answer.

Kite Parallelogram Rhombus Trapezium

Turn over for the next question

5 A solid cuboid is made from centimetre cubes.

The plan view, front elevation and side elevation are shown.

Plan view

Front elevation

Side elevation

How many centimetre cubes were used to make the cuboid?

6 The times that 80 customers waited at a supermarket checkout are shown.

Time, t (minutes)	Frequency
$0 \leqslant t<2$	32
$2 \leqslant t<4$	19
$4 \leqslant t<6$	20
$6 \leqslant t<8$	7
$8 \leqslant t<10$	2

6 (a) In which class interval is the median?
Circle your answer.
$0 \leqslant t<2$
$2 \leqslant t<4$
$4 \leqslant t<6$
$6 \leqslant t<8$

6 (b) The manager of the supermarket says,
" 90% of our customers wait less than 6 minutes."
Does the data support this statement?
You must show your working.

Answer

750 people took a test.
Before the test, they predicted whether they would pass or fail.
30 people predicted they would pass.
36 people did pass.
Of these 36 people, three times as many predicted pass as predicted fail.
Complete the frequency tree.

8 Tomas ran a Lucky Dip stall.

There were 750 tickets, numbered 1 to 750
Tomas sold all the winning tickets, and some of the losing tickets.
He made a profit of $£ 163$
How many losing tickets did he sell?
$9 \quad$ Write 280 as a product of its prime factors.

Answer

```
10 Expand and simplify \((y+5)(y-4)\)
```

Answer

Turn over for the next question

11 (a) Work out the size of angle x.

Not drawn accurately
[2 marks]
\qquad

Answer degrees

11 (b) Work out length y.

12 A water tank is a cylinder with radius 40 cm and depth 150 cm

It is filled at the rate of 0.2 litres per second.
1 litre $=1000 \mathrm{~cm}^{3}$
Does it take longer than 1 hour to fill the tank?
You must show your working.
$13 x(x+4) \equiv x^{2}+4 x$
For how many values of x is $\quad x(x+4) \quad$ equal to $\quad x^{2}+4 x$?
Circle your answer.

0
1
2
all

14 Sophie sells birthday cards.
She adds 30% profit to the cost price.
She sells the cards for $£ 2.34$ each.
She wants to increase her profit to 40% of the cost price.
How much should she sell each card for?

Answer $£$
$15\left(6 \times 10^{a}\right)+\left(6 \times 10^{b}\right)+\left(6 \times 10^{c}\right)=6006.6$ Write down a possible set of values of a, b and c.
\qquad

$$
b=
$$

\qquad $c=$ \qquad

16 Work out the equation of the line that
is parallel to the line
$y=5 x-3$
passes through
$(-2,-4)$

17 Joe asked 230 students how long it took them to travel to school.
The results are shown in the table.

Travelling time, \boldsymbol{t} (minutes)	Number of students
$0<t \leqslant 5$	44
$5<t \leqslant 10$	50
$10<t \leqslant 20$	54
$20<t \leqslant 30$	37
$30<t \leqslant 60$	45

This is Joe's attempt to draw a histogram to show the data.

Q17 asks for critical evaluation
of a statistical diagram - a topic
that many Higher students will be able
to have a really good attempt at.

Make two criticisms of his histogram.

Criticism 1 \qquad
\qquad
\qquad

Criticism 2 \qquad
\qquad
\qquad

Turn over for the next question

18 The table shows the running times of some films.

18 (a) Draw a cumulative frequency graph on the grid opposite to represent the data.
[3 marks]

Time, t (minutes)	Number of films
$0 \leqslant t<80$	0
$80 \leqslant t<100$	9
$100 \leqslant t<120$	35
$120 \leqslant t<140$	30
$140 \leqslant t<160$	8
$160 \leqslant t<180$	8

level that tests the AO 2 skills of
communicating and making inferences to draw conclusions in part (b).

18 (b) Estimate the number of these films with a running time of less than $2 \frac{1}{2}$ hours.

Turn over for the next question

$19 \quad w$ is directly proportional to y
w is inversely proportional to x^{2}
19 (a) When $y=4, w=14$
Work out the value of w when $y=9$
\qquad
\qquad
\qquad
\qquad

Answer

19 (b) When $x=2, w=5$
Work out the value of w when $x=10$

Answer

19 (c) Which graph shows the relationship between y and x ? Circle the correct letter.
[1 mark]
A

C

B

D

20 This iterative process can be used to find approximate solutions to $x^{3}+5 x-8=0$

[^3]20 (a) Use this iterative process to find a solution to 4 decimal places of $x^{3}+5 x-8=0$ Start with the value $x=1$

Answer

20 (b) By substituting your answer to part (a) into $x^{3}+5 x-8$ comment on the accuracy of your solution to $x^{3}+5 x-8=0$
$21 \quad A B C D$ is a parallelogram.
$C E=C F$

Prove that $y=x$

22 The Venn diagram shows information about a coin collection.
$\xi=120$ coins in the collection
$\mathrm{T}=$ coins from the 20th century
$B=$ British coins

A coin is chosen at random.
It is British.
Work out the probability that it is from the 20th century.
\qquad
\qquad -
\qquad
\qquad
\qquad

\qquad

Answer

23 The speed-time graph for a car's journey is shown.

23 (a) Estimate the acceleration at 6 seconds.
You must show your working.
[3 marks]
Answer
$\mathrm{m} / \mathrm{s}^{2}$

23 (b) Estimate the average speed of the car for the journey.
You must show your working.
[4 marks]

Answer m / s

23 (c) Evaluate your answer to part (b).
Tick a box.

Comment

24 Show that $\frac{2 w+4}{w^{2}-25} \times \frac{w+5}{w^{2}+3 w+2} \times\left(3 w^{2}-16 w+5\right)$
simplifies to $\quad \frac{a w+b}{c w+d} \quad$ where a, b, c and d are integers.
[5 marks]
\qquad

END OF QUESTIONSQ24 is a test of algebraic confidence and competence, designed to challenge able students. Those who can factorise and cancel efficiently should be able to construct the chains of reasoning required to reach a solution. This is a challenge, but it's accessible, as the maths required is absolutely clear.

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Paper 3 Higher Tier

This paper shows that not all of the initial 4 multiple choice questions need to be A01. Q3 is A02, assessing interpretation skills. The approach of all papers continues, with common questions making up many of the early questions. The final common question is Q12.

GCSE
 MATHEMATICS
 (8300/3H)
 Paper 3 Higher tier

Specimen 2015
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

1 Circle the inequality shown by the diagram.

$$
\begin{aligned}
& \text { [1 mark] } \\
& -7<x<6 \\
& -7 \leqslant x<6 \\
& -7<x \leqslant 6 \\
& -7 \leqslant x \leqslant 6
\end{aligned}
$$

2 The probability that a biased coin lands on heads is $\frac{2}{3}$
The coin is spun twice.
Circle the probability of two heads.
$\frac{2}{9}$
$\frac{4}{6}$
$\frac{4}{9}$
$\frac{4}{3}$

3 Water is poured into a glass for 4 seconds.
The graph shows the depth of the water in the glass.

What is the rate of change of the depth of the water?
Circle your answer.
$0.4 \mathrm{~cm} / \mathrm{s}$
$1.25 \mathrm{~cm} / \mathrm{s}$
$2.5 \mathrm{~cm} / \mathrm{s}$
$10 \mathrm{~cm} / \mathrm{s}$

4 The ratio of $x: y$ is $2: 3$
Circle the correct statement.

$$
x \text { is } \frac{2}{3} \text { of } y \quad y \text { is } \frac{2}{3} \text { of } x \quad x \text { is } \frac{2}{5} \text { of } y \quad y \text { is } \frac{3}{5} \text { of } x
$$

5 Factorise fully $9 a^{2}-6 a$

Answer

$6 \quad$ Work out the next term of this quadratic sequence.
4
12
24
40

Answer

7 Here is an ordinary dice.

7 (a) Ali is going to throw the dice six times.
He says,
"I will get one of each number."
Give a reason why he could be wrong.

7 (b) Lucy throws the dice 50 times.
Her results are shown.

Number thrown	1	2	3	4	5	6
Frequency	7	4	12	5	9	13

Work out the relative frequency of throwing an odd number.
[2 marks]
\qquad
\qquad

Answer

8 Polygon $A B C D E$ is divided into triangles as shown.

Not drawn accurately

Use the triangles to work out the sum of the interior angles of polygon $A B C D E$. You must show your working.
\qquad
\qquad
\qquad (L L

9 In a school, 60% of the students are girls.
50% of the girls walk to school.
20% of the boys walk to school.
What percentage of the students walk to school?
\qquad \longrightarrow \longrightarrow \longrightarrow \longrightarrow
\qquad

Answer \%

Turn over for the next question

10 The graph $y=a+b x-x^{2}$ is shown.

10 (a) Circle the coordinates of the turning point of the curve.
$(-2,0)$
$(0,12)$
$(2,16)$
$(6,0)$

10 (b) Circle the value of a.
-2
12
16
6

10 (c) Circle the two roots of $a+b x-x^{2}=0$

-2 and 6	2 and -6	2 and 6	-2 and -6

11 Adam and six other men ran a race.
The times, in seconds, of the six other men are shown.
9.75
9.79
9.80
9.88
9.94
9.98

The mean time for all seven men was 9.83 seconds.
Did Adam win the race?
You must show your working.

12 The diagram shows a square.

$$
(7 x-3) \mathrm{cm}
$$

Work out the length of one side of the square.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

13 A circle has equation $x^{2}+y^{2}=4$
Circle the length of its radius.
$14 a, b$ and c are different prime numbers less than 20

$$
a=\sqrt{4 b+c}
$$

Work out two possible sets of values of a, b and c.

Q14 tests problem solving in a mathematical context where it is not obvious how to start. A method involving trial and improvement or 'reasoned listing' is likely to lead to success, but students will need to build confidence in starting novel problems like this. Our resource package will offer substantive support in approaching problems of this type.

$$
\begin{array}{ll}
\text { Set } 1 a=\begin{array}{ll}
& a= \\
\text { Set } 2 a= & c= \\
\hline
\end{array} & b= \\
c=
\end{array}
$$

15 Simplify fully $\left(8 x^{3} y^{5}\right)^{2}$
[2 marks]

Answer

16 The diagram shows a lawn with a fence along one edge.

Not drawn accurately

One can of weedkiller covers 90 square metres.
Each can costs $£ 19.25$
Work out the total cost of the cans of weedkiller needed to cover the lawn.

17 Expand and simplify $\quad(2 x+5 y)(3 x-8 y)$

Answer

18 The ratio of the number of boys to girls at a party is $3: 4$
Six boys leave the party.
The ratio of the number of boys to girls at the party is now 5:8
Work out the number of girls at the party.

Answer

19 In the UK in 2000
25% of the population were under 24 years old 50% of the population were under 37 years old the inter-quartile range of the ages was 32 years the oldest person was 107 years old.

19 (a) Show the information on a box plot.

19 (b) It is predicted that in 2050 the age distribution in the UK will have

lower quartile	26 years
median	44 years
upper quartile	66 years

Make two comments about the predicted change in the age distribution in the UK from 2000 to 2050

Comment 1
\qquad
\qquad

Comment 2

Turn over for the next question

$20 £ x$ was invested for 8 years.
It earned compound interest at 2.5\% per year.
20 (a) Tom is working out the total interest earned.

State what is wrong with Tom's method.

20 (b) After 8 years the total value of the investment is $£ 11696.67$
Work out the value of the original investment, $£ x$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer £

21 Mersenne primes are prime numbers that can be written in the form

$$
2^{n}-1 \quad \text { where } n \text { is a whole number. }
$$

For example, $\quad 3$ can be written as $\quad 2^{2}-1$
21 (a) Prove that $2^{9}-1$ is not a Mersenne prime.
\qquad
\qquad
\qquad
\qquad
\qquad

21 (b) There are Mersenne primes when $n=5$ and when $n=7$
Ama says,
"The ratio of the indices is $5: 7$
This means the ratio of the Mersenne primes is $5: 7$ "
Show that Ama is wrong.
\qquad $\left[\begin{array}{l} \\ \hline\end{array}\right.$ \longrightarrow
\qquad \longrightarrow 1

[^4]22

Not drawn
accurately

Work out the value of y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
cm

[^5]$$
23 \text { Write } 2 x^{2}-20 x+65 \quad \text { in the form } \quad a(x-b)^{2}+c
$$

Answer

Turn over for the next question
$24 \quad A, B, C$ and D are points on a circle.
Angle $A B C=92^{\circ}$
Angle $A C B=38^{\circ}$
Angle $A C D=50^{\circ}$
Angle CDE $=32^{\circ}$

Tick whether each statement is true or false.
Give a reason for each answer.

Statement
$A C$ is a diameter
True False

Reason \qquad
\qquad
\qquad

[^6]
Statement

True
False

Angle $A D C=88^{\circ}$

Reason
\qquad \longrightarrow

Statement

True
False
$A B C D$ is a trapezium \square
\square

Reason \qquad
\qquad
\qquad

Statement

True
False
$D E$ is a tangent to the circle

Reason \qquad
\qquad
\qquad

25 A formula connecting speed (s), distance (d) and time (t) is

$$
s=\frac{d}{t}
$$

$d=160 \quad$ to 2 significant figures
$t=7.2 \quad$ to 2 significant figures

Work out the upper and lower bounds for s.
Give your answers to 3 significant figures.

Upper bound

Lower bound

26 For all values of $x, \quad \mathrm{f}(x)=x^{2}+1 \quad \mathrm{~g}(x)=x-5$
26 (a) Show that $\mathrm{fg}(x)=x^{2}-10 x+26$
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow

26 (b) Solve $\mathrm{fg}(x)=\operatorname{gf}(x)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
x=
$$

(i) Q26 assesses a challenging topic new to GCSE. We think it is appropriate at
the end of the paper to ask students to:

- show their reasoning in obtaining and
simplifying a composite function
- develop an unfamiliar mathematical situation
by generating and solving an equation.

27 Volume of a pyramid $=\frac{1}{3} \times$ area of base \times perpendicular height
$V A B C D$ is a rectangular-based pyramid with volume $336 \mathrm{~m}^{3}$
X is the centre of the base, directly below V.

Work out the angle between VB and the base.

(i)
Q27 is an example of a formula being given in the question. In the new specifications, students are expected to recall and use many more formulae than in the past. Whenever a student can be given a formula, we will include it in the question rather than having a formal sheet at the start of each question paper. This is a major benefit of NOT having a formula sheet. By this point in the paper, many students will have either forgotten about a formula sheet, or the specific formulae included on it. The provision of the required formula in the question should help students be able to tackle this multi-mark, problem solving question
at the very end of the paper.

Answer \qquad degrees

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

[^0]: (i) Q4 shows that
 students at Higher
 tier will need to be confident and competent in written calculations.

[^1]: Q22 requires students to construct a substantial chain of reasoning to obtain a result in a given format. The reasoning and persistence needed to complete this question is significant, as these papers are aiming for greater differentiation and challenge for the most able students. However, note again how clear the maths is and that there is no doubt about what we are testing here.

[^2]: Q24 includes elements of problem
 solving. The wording is minimal and designed to allow students to easily access the question and immediately be able to apply their mathematical knowledge to answer it.

[^3]: (i) Q20 and Q22 both illustrate new topics in

 GCSE Mathematics and how they might
 be tested in our Higher papers. We will also on
 occasion be using suffix notation when assessing
 iterative processes. We expect students to be
 familiar with the symbol for the universal set and
 will use it to define the data set being displayed in
 a Venn diagram.

[^4]: (i)

 Q21 tests whether students can work in unfamiliar mathematical
 situations. Mersenne primes will not be known by (m)any students, but they are fully explained at the start of the question. The proof needed in part (a) and the assessment of the validity of the argument in part (b) both depend on the students' engagement with the mathematical situation described. Introducing a new concept is always going to take a little bit of wording but we feel we have the skills to do this clearly and succinctly.

[^5]: (i)

 Q22 and Q23 are good
 examples of straightforward,
 AO1 assessment of bold content
 towards the end of a Higher tier
 paper. Good solid Higher tier
 students should find questions
 such as this accessible.

[^6]: (i)

 In Q24, no credit is given for simply answering
 true or false. For each part we are expecting the use of and stating of theorems in a formal way. The parts are connected, but they can be tackled independently, thus having the benefit of giving a greater opportunity for students to follow different approaches,
 demonstrate their knowledge and score some marks.

