GCE 2005

ASSESSMENT and

QUALIFICATIONS

ALLIANCE

January Series

Mark Scheme

Mathematics/Statistics

MS/SS1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

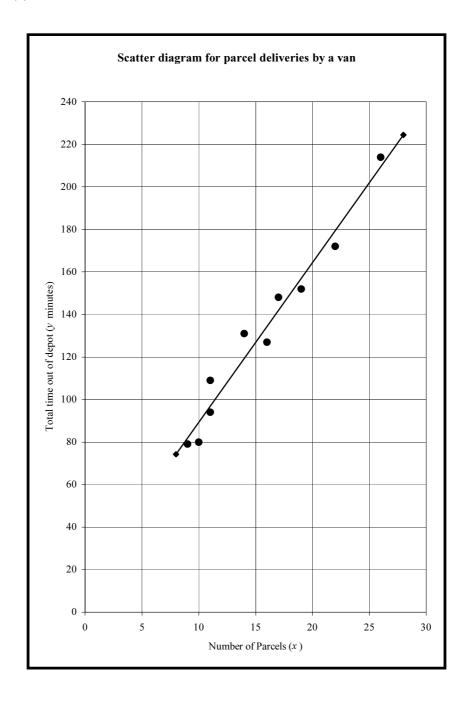
Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.
Set and published by the Assessment and Qualifications Alliance.
The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

M	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
A	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
√or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	OE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		


MS/SS1B

Q	Solution	Marks	Total	Comments
1(a)	The takings appear to increase slightly as the air temperature increases Weak positive (linear) correlation between air temperature and takings	B1		OE Comments on ranges of values of x and $y \Rightarrow$ B0
	One (or two) unusual results	B1	2	OE DE
(b)	Monday 10	B1	1	CAO; accept point (4, 312)
(c)	r = 0.817 to 0.818	В3	3	AWFW for attempts at Σx , $\Sigma x^2 \times 5$ or $S_{xx} \times 3$ M1 for attempted use of correct formula for r M1 for answer A1 If Monday 4 identified in (b), then: $r = 0.0156$ to 0.0157 scores M2 If no Monday removed, then: $r = 0.318$ to 0.319 scores M1
(d)	Temperature at another time Number of other/competing stalls Month/time of year Rainfall/snow Publicity	E1	1	Or a sensible alternative Number of customers \Rightarrow E0 Weather \Rightarrow E0 Population of town \Rightarrow E0
	Total		7	

Q	Solution	Marks	Total	Comments
2(a)	Volume $\sim N(\mu, 3.5^2)$			
	Mean, $\overline{x} = \frac{1830}{12} = 152.5$	B1		CAO $(s_{n-1} = 3.778, s_n = 3.617)$
	$98\% \implies z = 2.3263$	B1		AWFW 2.32 to 2.33
	CI for μ is $\bar{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n > 1$
	Thus $152.5 \pm 2.3263 \times \frac{3.5}{\sqrt{12}}$	A1√		ft on \overline{x} and z only
	(150.1 to 150.2, 154.8 to 154.9)	A1	5	AWFW
(b)	Evidence, from CI, that mean volume is (above) 150 ml	B1√		ft on CI in part (a); must be clear comparison of mean of 150 with CI
	In sample, some cans have volumes less than 150 ml	B1		Or reference to range of can volumes in sample
	Thus claim of 150 ml is not justified	B1dep	3	Dependent upon making some comment about mean volume and some comment about individual can volume or range of can volumes
(c)	Volume is normally distributed	E1	1	Accept 'population' or 'X' but not 'it' or ' \overline{X} ' etc ie must be clear statement sample too small \Rightarrow E0
	Total		9	

Q	Solution	Marks	Total	Comments	
3(a)	Scatter Diagram 8, 9 or 10 points plotted	B2	2	5, 6 or 7 points plotted	B1
(b)	b = 7.49 to 7.51 $a = 14.1$ to 14.6	B2 B2		AWFW; accept 7.5 AWFW for attempts at Σx , $\Sigma x^2 \times 4$ or $S_{xx} \times 2$	M1
	Regression Line (implied) ≥ 2 points calculated or use of point (\bar{x}, \bar{y})	M1		M1 for attempted use of correct formula for <i>b</i>	
	eg $x = 0$ $y = 14.3$ & $x = 25$ $y = 201.9$ straight line drawn	A1	6	A1 for answers	
(c)(i)	$y_{15} = 126$ to 128 Reliable as 15 is within (observed) range	B1 E1		AWFW OE accept points close to line	
(ii)	$y_{35} = 276$ to 278 Not reliable as 35 is outside (observed) range	B1 E1	4	AWFW OE accept y > 4 hrs so break needed	
(d)	a: time to travel to and from area from/to depotb: (average) time to deliver a/one parcel	E1		point off graph ⇒ E0 OE Both correct but reversed ⇒ E1 OE	
	(within area) Total	E1	2 14	Proportional to packages \Rightarrow E0	

Question 3 (a) & (b)

Q	Solution	Marks	Total	Comments
4(a)(i)	$X \sim N(\mu, 4^2)$			
	$\mu = 106$			
	$P(X < 110) = P\left(Z < \frac{110 - 106}{4}\right)$	M1		Standardising (109.5, 110 or 110.5) with
	(4)	1,11		106 and $(\sqrt{4}, 4 \text{ or } 4^2)$ and/or $(106 - x)$
	= P(Z < 1)	A1		CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(underweight) = P(X < 100)	M1		Use of AWFW 99 to 100
	$= P(Z < -1.5) = 1 - \Phi(1.5)$	m1		Area change
	= 1 - 0.93319 = 0.0668 to 0.067	A1	3	AWFW (0.06681)
(b)	$2\% \Rightarrow z = -2.0537$	B1		AWFW 2.05 to 2.06; ignore sign
	$z = \frac{100 - \mu}{4}$	M1		Standardising AWFW 99 to 100 with μ
	$z = {4}$	IVI I		and 4
	Thus $\frac{100 - \mu}{4} = -2.0537$			Equating <i>z</i> -term to <i>z</i> -value; not using 0.02,
	$\frac{1 \text{ nus}}{4} = -2.0537$	m1		0.98 or 1-z
	Thus $\mu = 108.2$ to 108.3	A1	4	AWFW
(c) (i)	$\mu = 108.5$			
	Mean, $\mu = 108.5$	B1		CAO
	Variance, $\frac{\sigma^2}{n} = \frac{4^2}{10} = 1.6$	В1	2	CAO; OE
	n = 10	D1	2	
(ii)				Standardising (109.5, 110 or 110.5) with
	(110-108 5)			$[\mu \text{ from (i)}]$ and
	$P(\bar{X} > 110) = P(Z > \frac{110 - 108.5}{\sqrt{1.6}})$	M1		-
	(\(\frac{1.0}{1.0}\)			$\sqrt{\frac{\sigma^2}{10}}$ or $\frac{\sigma^2}{10}$ from (i)
]
	D/7> 110\ 1 = ₹/110\	1		and/or $(\mu - x)$
	$= P(Z > 1.19) = 1 - \Phi(1.19)$	m1	2	Avea change
	= 0.117 to 0.119 Total	A1	3 15	AWFW (0.11784)
	Total		13	

Q	Solution	Marks	Total	Comments
5(a)(i)	p = 0.4			
	Attempted use of $B(7, 0.4)$ in (a)	M1		
	$P(X \le 2) = 0.419 \text{ to } 0.421$	B1		AWFW (0.4199)
(ii)	$P(X > 1 \text{ and } X < 5) = P(2 \le X \le 4)$			
	$= P(X \le 4)$	M1		Identification of at least 2, 3 and 4
	$-P(X \le 1)$	M1		Identification of exactly 2, 3 and 4
	= 0.9037 - 0.1586 = 0.744 to 0.746	A1	5	AWFW (0.7451)
(b)	$\mathbf{p}(V-7) = \binom{n}{(0.4)^7} (0.6)^{n-7}$			Correct expression for
	$P(Y=7) = \binom{n}{7} (0.4)^7 (0.6)^{n-7}$	M1		B(7; n , 0.4) with $n \neq 7$
	(28) 7 21			Fully correct expression
	$= {28 \choose 7} (0.4)^7 (0.6)^{21}$	A1		may be implied
	= 0.0425 to 0.0427	A1	3	AWFW (0.042556)
	- 0.0423 to 0.0427	AI	3	AWI W (0.042530)
(c)	Mean = np = 2.8	B1		CAO
	$SD = \sqrt{np(1-p)} = \sqrt{1.68}$			
	= 1.29 to 1.31	B1	2	AWFW
	- 1.29 to 1.31	DI	2	AWFW
(d) (i)	Mean = 2.8	B1		$CAO \Sigma f x = 140$
	SD = 2.24 to 2.27	B2		$AWFW \Sigma fx^2 = 644$
	$s_{n-1}^2 = 5.14$ to 5.15 and $s_{n-1}^2 = 5.04$			Substitution of values into correct formula
	S_{n-1} 3.17 to 3.13 and S_{n-1} 3.07			for variance or SD or
			3	SD = 5.03 to 5.15 AWFW M1
			3	3.03 to 3.13 11 11 11
(ii)	Means are the same	B1√		ft on (c) and (d)(i)
				ft on (c) and (d)(i); but must be s with σ
	SDs differ greatly	B1√		or s^2 with σ^2
	Thus answers do not support Aaron's			
	belief	B1	3	Dependent on B1 above CAO
	Total		16	

6(a)(i) $\frac{M}{M} = \frac{A}{38} = 369$ $\frac{F}{M} = \frac{26}{38} = \frac{275}{38}$ $\frac{F}{M} = \frac{26}{38} = \frac{275}{38}$ $\frac{F}{M} = \frac{26}{38} = \frac{275}{38}$ (ii) $P(F \cap A) = \frac{275}{165}$	5 643 4 946 (0.571)	710 944 1654	M1		
$\frac{F}{T} = \frac{26}{64} = \frac{27}{64}$ $P(F) = 944/1654 = (=$	5 643 4 946 (0.571)	<u>944</u>	M1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	946 (0.571)		M1		
P(F) = 944/1654 (=	0.571)	1654	M1		
	,		IVI I		Use of
(ii) $P(F \cap A) = 275/1654$	(= 0.166)			1	Use of
			M1	1	Use of
(iii) $P(F \cup A) = \frac{944 + 36}{1654}$	<u> 9</u>		3.61		H. C.OF
100.			M1		Use of; OE
= 1313/1654 or 0	.793 to 0.795		A1	2	CAO/AWFW (0.7938)
(iv) $\Big _{\mathbf{D}(E \mid A) = \mathbf{their}}$ their (ii)					
(iv) $P(F \mid A) = \frac{\text{their (ii)}}{644/1654}$			M1		Use of
/1654				2	G + O / A V T V - (0 4070)
= 275/644 or 0.42	6 to 0.428		A1	2	CAO/AWFW (0.4270)
$\begin{array}{c ccccc} \textbf{(b)(i)} & & & & 710\times7 \end{array}$	709×708				
(b)(i) $P(MMM) = \frac{710 \times 7}{1654 \times 10}$	653×1652		M1		Use of (without replacement)
= 0.0788 to 0.0791	000771002		A1	2	AWFW (no fraction) (0.07891)
			3.61		11. (. 6
(ii) 710×044	×042×2		M1		Use of one combination of <i>MFF</i> (without replacement)
$P(MFF) = \frac{710 \times 944}{1654 \times 16}$	52×1652		M1		Use of multiplier of 3
= 0.419 to 0.421	33×1032		A1	3	AWFW (no fraction) (0.4198)
0.417 to 0.421			711	3	71W1 W (no fraction) (0.4170)
(c)(i) Female (and) Acade	mic		B1	1	CAO
(ii) Male			B1		Not female $\Rightarrow B0$
OR			В1	2	'OR' must be clearly stated or implied Addition of 'not both' ⇒ B0
Academic (or both)		Total	DI	14	Addition of not both \rightarrow by
	,	TOTAL		75	