

General Certificate of Education

Mathematics/Statistics 6360/6380

MS/SS1A Statistics 1A

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M mark is for method

m or dM mark is dependent on one or more M marks and is for method mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

√or ft or F follow through from previous

incorrect result MC mis-copy correct answer only MR mis-read

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

AWRT anything which rounds to **ISW** ignore subsequent work any correct form **ACF FIW** from incorrect work answer given given benefit of doubt AG **BOD** SC special case WR work replaced by candidate

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

NMS no method shown c candidate
PI possibly implied sf significant figure(s)
SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

CAO

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

MS/SS1A/W

Q	Solution	Marks	Total	Comments
1 (a)	r = 0.797	В3		AWRT
	or $r = 0.79 \text{ to } 0.81$ or	(B2)		AWFW; accept 0.80 but not 0.8
(i)	r = 0.8	(B1)		
	Attempt at $\Sigma x \Sigma x^2 \Sigma y \Sigma y^2 \Sigma xy$ or Attempt at $S_{xx} S_{yy} S_{xy}$	(M1)		115, 1725; 130, 2076.36; 1809.3 402.5; 386.36; 314.3
	Attempt at a correct formula for <i>r</i>	(m1)		
	r = 0.797	(A1)	3	AWRT
(ii)	Strong (fairly strong) evidence of a positive (direct) linear correlation (association/relationship)	B1		Not 'some' or 'weak' or 'good' Must use 'positive' or equivalent and 'correlation' or equivalent Accept 'high' as alternative to 'strong'
	time in store and value of items purchased	B1		Context
(b)	r = Answer to (a)(i) or r = 0.797	B1√		on (a)(i) providing $-1 < r < 1$ AWRT
	Total		1 6	

Q	Solution	Marks	Total	Comments
2 (a)	Volume $X \sim N(56, 2.5^2)$ $P(X < 60) = P\left(Z < \frac{60 - 56}{2.5}\right)$	M1		Standardising (59.5, 60 or 60.5) with 56 and ($\sqrt{2.5}$, 2.5 or 2.5 ²) and/or (56 – x)
(i)	= P(Z < 1.6)	A1		CAO; ignore sign
	= 0.945	A1	3	AWRT (0.94520)
(ii)	P(50 < X < 60) = (i) - P(X < 50)	M1		Or equivalent
	$= (i) - P(Z < -2.4) = (i) - [1 - \Phi(2.4)]$	m1		Area change
	= 0.94520 - (1 - 0.99180) = 0.937	A1	3	AWRT (0.93700)
(iii)	P(X=55)=0	B1	1	CAO
(b)	$98\% \Rightarrow z = 2.05 \text{ to } 2.06$	B1		AWFW; ignore sign (-2.0537)
	$z = \frac{100 - \mu}{3.4}$	M1		Standardising 100 with μ & 3.4 Allow (μ – 100)
	Thus $\frac{100 - \mu}{3.4} = -2.0537$	M1		Equating z-term to z-value Not using 0.98, 0.02 or $ 1-z $
	Thus $\mu = 107$	A1	4	AWRT
	Total		11	

Q	Solution	Marks	Total	Comments
3	$\begin{array}{c c} P(D) = 0.6 \ (60\%) \\ \hline P(d \mid D) = 0.75 \\ \hline P(i \mid D) = 0.15 \\ \hline P(n \mid D) = 0.10 \\ \hline \end{array} \qquad \begin{array}{c} P(D ') = 0.4 \ (40\%) \\ \hline P(d \mid D ') = 0.05 \\ \hline P(i \mid D ') = 0.15 \\ \hline P(n \mid D ') = 0.80 \\ \hline \end{array}$			$D \Rightarrow D$ is eased fish $d \Rightarrow d$ is eased) $i \Rightarrow i$ nconclusive
(a)(i)	$P(D \cap d) = P(D) \times P(d \mid D) = 0.6 \times 0.75$	M1		n -> non discussed)
	= 0.45	A1	2	CAO (9/20)
(ii)	$P(d) = P(D \cap d) + P(D' \cap d)$			
	$= (i) + P(D') \times P(d \mid D')$	M1		(a)(i) + (1 prob)
	$= 0.45 + (1 - 0.6) \times 0.05$	m1√		on (a)(i)
	= 0.45 + 0.02 = 0.47	A1	3	CAO
(iii)	P(correct) = P($D \cap d$) + P($D' \cap d'$) = (i) + P (D') × P(d' D') Or = 0.45 + (1 – 0.6) × 0.80	M1√		Correct expression/values √ on (a)(i)
	= 0.45 + 0.32 = 0.77	A1	2	CAO
(b)	$P([d D] \cap [d D] \cap [d' D])$			
	$= [P(d \mid D)]^2 \times P(d' \mid D)$	M1		$(Prob)^2 \times (Prob)$; or equivalent
	multiplied by 3	M1		Multiplier of 3
	$= 0.75^{2} \times 0.10 \times 3 = 0.168 \text{ to } 0.169$	A1	3	AWFW (0.16875)
	Total		10	

www.theallpapers.com

Q	Solution	Marks	Total	Comments
4	G 1: 4 1 0 0040	D2		AMP
(a)	Gradient, $b = 0.0848$ or	B2		AWRT
	b = 0.084 to 0.085	(B1)		AWFW
	Intercept, $a = 1.72$ to 1.73	В2		AWFW
	or	D2		
	a = 1.7	(B1)		CAO
	Attempt at $\Sigma x \Sigma x^2 \Sigma y \Sigma xy$			224, 7180; 32.8; 995.4
	or	(M1)		
	Attempt at S_{xx} S_{xy}	(1)		908; 77
	Attempt at a correct formula for b b = 0.0848	(m1) (A1)		AWRT
	a = 1.72 to 1.73	(A1)		AWFW
	Accept $a \& b$ interchanged only if $y = ax + b$ stated or subsequently used			
	y = ax + b stated of subsequently used correctly in (b)		4	
	, , ,			
(b)(i)	Residual = $y - a - bx$	M1		Res = $ (Obs y) - (Pred y) $ & used Allow use of $x = 3$ and/or $x = 7$
	$(Residual)_3 = -0.465 \text{ to } -0.485$	A1		AWFW
	(**************************************	(A1)		Both correct magnitude
	$(Residual)_7 = -0.335 \text{ to } -0.365$	A1		AWFW
			3	
(ii)	Residuals are small			Except for (Residual) ₆
	(relative to y-values)			Any sensible comment;
	No pattern to residuals			Residuals random
		B1		
	Fitted equation is appropriate/suitable	B1		Or equivalent
				Do not allow 'equation is good' or
			2	'equation is accurate'
			<u> </u>	
	Total		9	

Q	Solution	Marks	Total	Comments
5 (a)(i)	B(n, 0.07)	M1		Use of in (a)
	$P(X=2) = {17 \choose 2} (0.07)^2 (0.93)^{15}$ $= 136 \times 0.0049 \times 0.33670$	A1		Fully correct expression May be implied
	= 0.224 to 0.225	A1	3	AWFW (0.22438)
(ii)	$P(X \le 5 \mid B(50, 0.07))$	M1		Attempted; tables or formula (≥3 terms stated) May be implied
	= 0.865	A1	2	AWRT (0.8650)
(b)	<u>B(50, 0.55)</u>			
	$P(Y \ge 30) = P(Y' \le 20)$	M1		Change from <i>Y</i> to <i>Y</i> ' Must be clear evidence
	with $p = 0.45$	A1		Stated or implied
	= 0.286	A1	3	AWRT (0.2862)
	Total		8	

Q	A/W (cont) Solution	Marks	Total	Comments
6				
(a)(i)	Mean $(\bar{x}) = 24.7$ to 25.7	B2		AWFW (25.2)
	Standard Deviation (s_n, s_{n-1})			
	= 16.7 to 17.7	B2		AWFW (17.1474 or 17.2338)
	MPs (<i>x</i>): 5.5, 15.5, 23, 28, 33, 38, 45.5, 75.5	(B1)		At least 4 correct
	$Mean (\bar{x}) = \frac{\sum fx}{100}$	(M1)		Use of
			4	
(b)	Data is skewed or not symmetric			
	Discrete data or counts $(Mean - 2 \times SD) < 0 \Rightarrow negative counts$	B1		One valid reason
	$(Mean - 2 \times SD) < 0 \implies \text{negative counts}$		1	
(c)(i)	Since sample size large $(n > 30)$		*	
	can use Central Limit Theorem	B1		Either point
			1	
(ii)	Mean = μ	В1		CAO; not \bar{x} or its value
(11)	μ	Di		
	σ^2			Accept $\frac{\sigma^2}{n}$ or $\frac{(\text{their SD})^2}{100}$, etc
	Variance = $\frac{\sigma^2}{100}$	B1		n 100
			2	
(d)	$99\% \Rightarrow z = 2.57 \text{ to } 2.58$	D.1		AWFW (2.5758)
		B1		
	$(\sigma \text{ or } s)$			Use of
	CI for μ is $\bar{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Must have $(\div \sqrt{n})$ with $n > 1$
	\sqrt{n}			(' '
	17.1 or 17.2			
	Thus $25.2 \pm 2.5758 \times \frac{17.1 \text{ of } 17.2}{\sqrt{100}}$	A1√		\int on \bar{x} , z and $s > 0$; not on n
	VIO			
	(1.1. a. a. a. a.			
	(20.8, 29.6)	A1	4	AWRT
(e)	UCL < 30	B1√	4	√ on CI
	so so	↑ dep		
	Reject claim that $\mu > 30$	B1√		√ on CI
	7/100 or 7% of X > 50 (from table)	B1		CAO
	50 (Holli table)	↑dep		CAU
	Reject claim that often $X > 50$	B1		CAO
			4	
	Total Total		16	
	Total		60	