Version 1.0

General Certificate of Education (A-level) June 2013

Statistics

SS06

(Specification 6380)

Statistics 6

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)
NMS PI SCA c sf	no method shown possibly implied substantially correct approach candidate significant figure(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	H_0 pop mean diff $\mu_d = 0$	B1		Must refer to pop mean differences or μ_d
	H_1 pop mean diff $\mu_d \neq 0$			
	2 tail 5%			
	d = K - EMC $1 2 3 4 5$ $d -0.4 0.8 -0.4 -0.5 0.1$ $6 7 8 9 10$ $-0.8 -0.5 0 -0.6 0.1$	M1		Differences – can be reversed
	$\overline{d} = -0.22 \ s = 0.471 \ n = 10$	m1		attempt to find \overline{d} , s can be implied
	$t = \frac{-0.22 - 0}{0.47 / t} = -1.48$	m1		Use of $\frac{s}{\sqrt{10}}$ ft
	$\sqrt{10}$	m1		Method for t
		AI		$(\pm) 1.48 (1.46 - 1.48)$
	df = 9 cv = -2.262 -2.262 < -1.48	B1		for correct cv (or $p = 0.17 > 0.05$ B1)
	Accept H ₀			*sc4 '0' ignored scores B1 M1m1m1 $\frac{s}{\sqrt{9}}$
	<u>No significant evidence</u> to suggest that there is a difference in mean <u>measurements</u> for the two <u>devices</u> .	E1	8	correct conclusion in context
(ii)	Assumed that differences in first ray foot measurements are normally distributed	E1		Normal distribution mentioned <u>in a</u> sentence E1
		E1	2	Differences in foot measurements are normal gains other E1
(b)(i)	Attempt at double ss	M1		
	$\begin{array}{ccccc} 1^{\text{st}} & 0 & 1 & 1 \\ 2^{\text{nd}} & 0 & 1 & \text{for acceptance} \end{array}$			
	$P(Acc) = P(0) + P(1) \times P(0) + P(1) \times P(1)$ = P(0) + P(1) \times P(1 or fewer)	M1		
	$= 0.5438 + 0.3364 \times 0.8802$	m1	4	Use of B (20, 0.03) .5438, .3364, .8802
	= 0.840 (0.839)	AI	4	cao
(ii)	Expected number tested			
	$= 20 + (extra 20) \times P(1)$	M1		$20 + (20 \times \text{prob from B}(20, 0.03))$ as
	$= 20 + 20 \times 0.3364$			above
	= 26.7	A1	2	26.5–26.8 disallow integer answer
	Total		16	

Q		Solution		Marks	Total	Comments
2(a)(i)	The furnace run			B1		
(ii)	The dose of implant material			B1		
(iii)	To eliminate bias – ensures that all wafers were produced in the same way so any difference detected should be due to implant dose or furnace run			E1E1	4	E1 eliminate bias E1 any difference detected
(b)(i)	Harriet's desi	gn/Rand Blo	ck design takes	E1		Harriet accounts for furnace effect
	into account any differences that result					
	from the different furnace runs involved;		E1	2	Eric ignores furnace effect	
	Eric's does n	ot take this i	nto account			
(ii)	F 1	F2	F3	B1		Use of $D1 - D4$
	D1	D1	D1	B1	2	Correctly placed – any order within each
	D2	D2	D2			run
	D3	D3	D3			
	D4	D4	D4			
(c)	Two factor analysis of variance			E1E1	2	ANOVA E1 Two factor E1
	Total				10	

Ο	Solution	Morka	Tatal	Commonte
<u>V</u> 3(a)(i)	Solution Low level Medium level High level	wiarks	Total	Comments
J(a)(I)	$T_{\text{low}} = 85.8 T_{\text{mad}} = 108.6 T_{\text{high}} = 85.6$			
	$n_{\text{low}} = 5$ $n_{\text{med}} = 6$ $n_{\text{high}} = 5$			
	T = 280			
	$\sum \sum r^2 = 4910.2$ $N = 16$			
	$\sum \frac{T_i^2}{1000000000000000000000000000000000000$			
	$-n_i$ 5 6 5			
	= 4903.46			
	SS treats = $4903.46 - \frac{280^2}{1000}$	M1		SS for treatments
	16			
	= 3.40			
	SS _{Total} = $4910.2 - \frac{280}{16}$	M1		SS for total
	- 10 2			
	- 10.2			
	SS df ms			
	Treats 3.46 2 1.73			
	Error 6.74 13 0.52	M1dep		Error SS ft (not -ve)
	Total 10.2 15	Midep		Either his correct method (SS/df)
	1.73	M1dep		Method for F (ft) 'their ms treats/ms
	$F = \frac{110}{0.52} = 3.33$			error'
		A1		3.1–3.5
	Γ^2 2.90	R 1		df correct 213
	$F_{13} = 3.800$	B1		cv correct (or $p = 0.068 > 0.05$ B2)
	$H_0 \ \mu_{low} = \mu_{med} = \mu_{high}$	B1		Hypotheses
	H_1 at least 2 of the means differ oe			
	One mean sig different from others			
	3.806 > 3.33 Accept H.	Δ1	10	Conclusion correct
	There is no significant evidence of a		10	Conclusion correct
	difference in mean breaking strength for			
	the 3 thread treatment levels.			
$(a)(\mathbf{i})$	Since there is no significant difference			
	detected between mean breaking	E1		No difference in strengths for treatments
	strength for the three thread	21		
	treatments/levels, the company should			
	not be advised to use any one particular	E1	2	Could not advise company to use a
	treatment level.			specific level of treatment or choose
(b)	The Kruskal–Wallis test as this is	B1		Kruskal–Wallis
	distribution free so does not depend on		_	
	assumption that breaking strengths are	E1dep	2	Does not require underlying normal
	normally distributed.		14	aisuibution/distribution free.
	lotai		17	

Q	Solution	Marks	Total	Comments
4 (a)(i)	Warning			
	$1 \pm 1.96 \times 0.015 / (0.985, 1.015)$	B1		For 1.96 and 3.09
	/ \/4	M1		0.015 /
		111		For $\sqrt{4}$
	Action			, , .
	$1 \pm 3.09 \times 0.015 / -$ (0.977, 1.023)	A1		Warning correct to 3 dp
	/ \/4	A 1		
		AI		Action correct to 3 dp
(ii)	Standard deviations			
	$0.015 \times 0.09 = 0.0013(5)$ <u>0.001</u>			
	$0.015 \times 0.27 = 0.0040(5)$ 0.004	M1		E values correct \times 0.015
	$0.015 \times 1.76 = 0.0264$ 0.026	Al	6	Correct to 3 dp
	$0.015 \times 2.33 = 0.0350$ 0.035			
(b)(i)	Sample 5 Sample 6 Sample 7 Sample 8			
	\overline{x} (1.010) <u>0.980</u> 1.000 <u>0.995</u>	M1		One mean OK
		M1		One sd OK
	s <u>0.041</u> (0.022) 0.032 <u>0.029</u>	A1	3	All means and sd values correct
(ii)	Since sd beyond upper action limit	M1		A1 dep on M1
(11)	production should have been stopped .	Al	2	scB1 Production stopped
	·			
(iii)	Process fine up to sample 5	E1		
	Mean sample 6 is 0.980 (between	E1		Sample 6 a warning for mean
	warning and action limits)	21		Sumple 6 a warming for mean
	_			
	Sd <u>sample 5</u> a <u>problem</u>	E1	3	General comments on sd problems -
	and action limits			for samples 7 and 8
	and action mints.			for samples 7 and 6.
(c)	$P(0.9853 < \overline{X} < 1.0147)$	M1		Identification of need for evaluation of
				probability of mean between values
				0.985 - 1.015
	$z = \frac{0.9853 - 1.004}{0.02} = -1.87$			
	1.0147-1.004			
	$z = \frac{0.02}{\sqrt{z}} = 1.07$	MI		z-values
	$\sqrt{\sqrt{4}}$	Δ 1	2	0.82 0.84
	r(0.9855 < X < 1.0147) = 0.827	AI	3 17	0.02 - 0.04
	IUtal		1/	

Q	Solution	Marks	Total	Comments
5 (a)	Latin Square	M1	1	
(b)(i)	$T_A = 121$ $T_B = 136.6$ $T_C = 114.2$ $T_D = 124.4$ $n_A = 4$ $n_B = 4$ $n_C = 4$ $n_D = 4$			
	$\sum \frac{T_i^2}{n_i} = \frac{121^2}{4} + \frac{136.6^2}{4} + \frac{114.2^2}{4} + \frac{124.4^2}{4}$ $= 15454.39$ SS Blends = 15454.39 - $\frac{496.2^2}{16}$	M1		SS for Blends
	= 65.99	M1		SS for total
	= 217.89	1011		
	SS df ms F Driver 14.47 3 4.82 (0.49)			
	Car 77.8 3 25.96 2.62			
	Blends 65.99 3 22.00 2.22 petrol			
	Error 59.56 6 9.93	m1 B1		Error SS ft (not –ve) 59.56 df error = 6 correct
	Total 217.89 15	m1		Method for MS (dep error ss/df) prev m1B1
	$F = \frac{25.96}{9.93} = 2.62$ for blends	m1		Method for F (ft)
	$F = \frac{22.00}{9.93} = 2.22$ for models	A1	7	Either 2.58 – 2.64 or 2.10 – 2.32 correct
(ii)	$F_{6}^{3} = 4.757$	B1 B1		df correct 3,6 cv correct cao (or $p = 0.146$, $p = 0.187 > 0.05$) B1 M1)
	2.61, 2.22 < 4.757	M1		Comparison F 's and cv (4.757) ft - can be implied
	H ₀ : $\mu_{A} = \mu_{B} = \mu_{C} = \mu_{D}$ H ₁ : at least 2 of the means differ	B1		Hypotheses
	one mean different from other two $H_0: \mu_I = \mu_{II} = \mu_{III} = \mu_{IV}$			
	H_1 : as above Accept H_0 for both blends and for models	A1	5	Both Accept H ₀

Q	Solution	Marks	Total	Comments
5(b)(iii)	There is <u>no</u> significant evidence of a	E1		No difference in mean mpg/miles for
	difference in mean miles per gallon/fuel			either blends or models.
	efficiency between the four blends of	E1	2	Fully explained in context using 'mean
	petrol and also none between the four			mpg'or 'fuel eff', 'blends of petrol' and
	models of car.			models of car'
(c)	Fuel efficiency measurements, mpg, are	E1		Normal dist in <u>context sentence</u>
	normally distributed.			
	There is a <u>common underlying variability</u>	E1		Common variability in <u>context</u>
	for mpg measurements.			
	There is <u>no interaction</u> between <u>petrol</u>	E1	3	Must be in context
	<u>blend</u> , <u>car model</u> and <u>driver</u> .			
	Total		18	
	TOTAL		75	