

General Certificate of Education

Statistics 6380

SS06 Statistics 6

Mark Scheme

2008 examination – June series

www.theallpapers.com

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

www.theallpapers.com

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 08

SS06				
Q	Solution	Marks	Total	Comments
1(a)	Warning limits			
	$850 \pm 1.96 \times \frac{0.8}{\sqrt{4}}$			
	850 ± 0.784			
	849.22 ~ 850.78			
	Action limits			
	$850 \pm 3.09 \times \frac{0.8}{\sqrt{4}}$	M1		$850 \pm (\text{their } z) \times (\text{their sd})$
	$\sqrt{4}$	m1		correct method - their z - both limits
	850 ± 1.236	B1		1.96 and 3.09 - allow 2 and 3 or 3.0902
	848.76 ~ 851.24	A1	4	all limits correct 1dp - allow in \pm form
(b)	Upper action $2.33 \times 0.8 = 1.86$	M1		method - allow upper limits only/use of
	Upper warning $1.76 \times 0.8 = 1.41$			range factors/incorrect <i>n</i> , but only one of
	Lower warning $0.27 \times 0.8 = 0.22$			these errors
	Lower action $0.09 \times 0.8 = 0.07$	A1	2	all; ± 0.01
(c)	$\overline{x} = 850.7$ $s = 0.73$	B1		850.7 CAO and 0.73 (0.72 ~ 0.73)
	Both mean and standard deviation within	A1√		both mean and sd within warning limits -
	warning limits - no action required.			may be implied by correct conclusion
				based on correct working
		A1√	3	no action
	Total		9	
2(a)	Design 1 is the completely randomised	B1	1	Design 1
	design.			
(b)	Randomised block design	B1	1	block
(c)				- each technician uses each panel
	instrument panel. This reduces	E2,1	2	- reduces experimental error
	experimental error and makes it more			- more likely to detect a difference
	likely that a difference - if one exists -			- less technicians needed
	will be detected.			max 2
	Total		4	

Q	Solution	Marks	Total	Comments
3(a)	(i) mean $\frac{792}{10} = 79.2$ must be whole number so 79 suitable estimate.			
	(ii) proportion of sweets with imperfect coating = $\frac{94}{792}$	M1		method for either - can be demonstrated by a correct value - eg 79.2 or 0.1187
(b)	= 0.118686 suitable estimate is 0.119 Warning limits	A1	2	both answers correct based on correct working - AG
(-)	$\begin{array}{l} 0.119 \pm 1.96 \sqrt{\frac{0.119 \times 0.881}{79}} \\ 0.119 \pm 0.0714 \\ 0.048 \sim 0.190 \end{array}$	B1		method for sd
	Action limits $0.119 \pm 3.09 \sqrt{\frac{0.119 \times 0.881}{79}}$ 0.119 ± 0.1126 $0.006 \sim 0.232$	M1 B1 A1	4	$0.119 \pm (\text{their } z) \times (\text{their sd})$ 1.96 and 3.09 - allow 2 and 3 or 3.0902 $0.048 (0.046 \sim 0.05)$ $0.190 (0.190 \sim 0.192)$ $0.006 (0.006 \sim 0.010)$ $0.232 (0.228 \sim 0.232)$
(c)	(i) $\frac{16}{76} = 0.211$ between upper warning and action limits - take another sample	B1		0.211 (0.21 ~ 0.211)
	immediately - if still above upper warning limit take action.(ii) Sample too small for charts to be	A1√ B2,1	4	correct action, their figures sample too small for charts to be valid
	valid. Take another sample.	-,-	10	1

Q	Solution	Marks	Total	Comments
4 (a)	A B C D E F G H d -18 -10 43 7 -25 55 10 5	M1		method for differences
	$\begin{array}{ll} H_0: \mu_d = 0 & H_1: \mu_d \neq 0 \\ \overline{x}_d = 8.375 & s_d = 28.121865 \end{array}$	B1		both hypotheses - needs μ or 'population'
	$t = \frac{8.375}{28.121865}$	M1		use of their $\frac{sd}{\sqrt{8}}$
	$\overline{\sqrt{8}}$	m1		clearly correct method for <i>t</i>
	= 0.842	A1		0.842 (0.842 ~ 0.843) or -0.842
	critical value $t_7 \pm 1.895$	B1		7df
		B1		B1 1.895 - ignore sign
	Accept $H_0: \mu_d = 0$ - data supports claim that there is no difference between	A1√		AG correct conclusion their figures - must be compared with correct tail of t
	advised price and obtained price.	A1√	9	allow arithmetic errors or numerically incorrect <i>t</i> value only.
(b)	12 + 5 = 17 out of $12 + 8 = 20$ items would have received less than advised by	B1		17 out of 20 received less - or equivalent
	Sidney $H_0: p = 0.5$ $H_1: p < 0.5$	B1		both hypotheses - accept p as implying population
	n = 20 P(17 or more) = 0.0013 < 0.01	M1		Attempt to use relevant binomial with $p = 0.5$
	and and TI			0.0013
	reject H ₀ . Significant evidence that price which would be obtained is on average less than	A1√		conclusion - allow small errors in number of items eg 16 out of 19 or small errors i use of binomial.
	that advised by Sidney.	A1√	6	conclusion in context completely correc method
(c)	When only items which were sold are considered, the data is consistent with Sidney's claim. However when all items	E1√		One relevant point based on their conclusions
	offered for sale are considered, there is significant evidence that Sidney on average overestimates the price which will be obtained. Before the auction it is not possible to tell whether or not the item will sell, so it is the latter result which is relevant.	E1	2	A second relevant point - both based on correct conclusions
	Total		17	

Q	Solution	Marks	Total	Comments
5(a)	(i) $z = \frac{1003 - 999}{6}$	M1		use of $\frac{6}{\sqrt{5}}$
	$\frac{6}{\sqrt{2}}$			
	√5	ml		method for either z - ignore sign
	= 1.491	m1		completely correct method both probabilities - allow interchanged
	P(accept) = 1 - 0.932 = 0.068	A1		0.068 (0.0675 ~ 0.07)
	(ii) $z = \frac{1003 - 1007}{6}$			
	$\frac{3}{\sqrt{5}}$			
	= -1.491			
	P(accept) = 0.932	A1	5	0.932 (0.93 ~ 0.933)
(b)	on insert	M1		method for graph
		A1	2	reasonably accurate plot - by eye:
				5 printed points and attempt at curve;
				disallow if >1 or <0
5(c)(i)	B(25, <i>p</i>)			
- (-)(-)	% n-c 10 15 25 30			
	p 0.967 0.838 0.378 0.193	M1		method
		A1	2	all correct 2 dp
(ii)	on insert	M1	2	method - generous
		A1	2	reasonably accurate plot - including (0,
(d)(i)	0.036	B1	1	0.036 (0.025 ~ 0.04)
(ii)	$z = \frac{993 - 998}{6} = -0.833$			
	P(<993) = 1 - 0.798 = 0.202	B1	1	0.20 demonstrated - may be implied by
	0.20 to 2 sf			0.202 etc - AG
(iii)	P(accept) = 0.6	B1	1	(0.58 ~ 0.64)
(:)				
(iv)	$z = \frac{1000 - 998}{6} = 0.333$			
	-	B1		0.631 (0.629 ~ 0.631)
	Probability < 1000g is 0.631	DI		0.031 (0.029 ~ 0.031)
	ie 63% - more than half batch weigh less than nominal quantity - batch should			
	clearly be rejected. Hence plan based on	E1		batch should be rejected
	mean is preferred (prob rejection 0.96			
	compared to 0.4 for other plan).	E1	3	more chance of rejecting with plan base
				on mean - based on previous correct working

Q	Solution	Marks	Total	Comments
6(a)	P Q R Total			
	A 96 35 122 253			
	B 42 31 146 219			
	C 131 54 137 322			
	Total 269 120 405 794			
	10001207 120 103 771			
	Σ Marian = 296 Σ John = 214			
	Σ Sajid = 284	M1		totals for cyclists calculated
	Total SS = $88212 - \frac{794^2}{9} = 18163.6$	M1		method for total SS - generous
	Between batteries SS			
	$=\frac{269^2}{3}+\frac{120^2}{3}+\frac{405^2}{3}-\frac{794^2}{9}=13546.9$	M1		method for between batteries SS
	Between back lights SS			
	$=\frac{253^2}{3}+\frac{219^2}{3}+\frac{322^2}{3}-\frac{794^2}{9}=1836.2$	M1		method for between lights SS
	$=\frac{3}{3}+\frac{3}{3}+\frac{3}{3}-\frac{9}{9}=1830.2$			
	Between cyclists SS			
	$=\frac{296^2}{3}+\frac{214^2}{3}+\frac{284^2}{3}-\frac{794^2}{9}=1307.6$	M1		method for between cyclists SS
	3 3 3 9			
				(M marks cannot be gained for negative
				SS.)
		N/1		
	Source S.S. D.F. MS	M1		method for error SS - their figures
	Batteries 13546.9 2 6773.5			
	Lights 1836.2 2 918.1			SC for the 5 SS method marks, allow 2
	Cyclists 1307.6 2 653.8			if consistently correct method for betw
	Error 1472.9 2 736.5			SS apart from divisor of 794 ²
	Total 18163.6 8	1		method for MC hattaning and any
		m1		method for MS - batteries and error -
		D 1		requires all previous Ms - their df
		B1		df - batteries and error
	H ₀ : No difference between batteries	B1		null hypothesis
	$F = \frac{6773.5}{725.5} = 9.2$	m1		method for F - their df
	$r = \frac{736.5}{736.5} = 9.2$	A1		9.2 (9.19 ~ 9.21)
	Critical value $F_{2,2}$ is 19.00	B1		19.00
	<i>2,2</i>			
	Accept H ₀ - no significant evidence of	A1√		AG conclusion - must be compared with
	difference in mean lives of makes of			upper tail of F
	battery.	A1√	14	in context - previous A mark required -
		1111		cannot be gained if H_0 incorrect

SS06 (cont)				
Q	Solution	Marks	Total	Comments
6(b)(i)	P Q R mean 89.7 40.0 135.0 Sample mean of batteries of make R much	E1		mean of R much larger than Q - may be implied by showing means
	larger (more than 3 times) than that of make Q. Sajid was surprised that this difference was not significant.	E1		surprising this difference not significant
(ii)	More df $(4,12) \rightarrow$ much smaller critical value \rightarrow more chance of detecting a difference if one exists.	E1		more df /smaller cv /more powerful
	Much more complicated / time consuming /difficult to implement.	E1	4	more complicated or equivalent
	Total		18	
	TOTAL		75	
