

General Certificate of Education

Statistics 6380

SS06 Statistics 6

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS06

Q	Solution	Marks	Total	Comments
1(a)(i)	Group treated with new ointment	B1		CAO
(ii)	Group treated with well established			
	ointment	B1	2	CAO
(b)	Neither patient nor medical staff	E1		patients don't know
	administering the ointment know			
	which is new and which is well	E1		administrators of treatment don't know
	established ointment. This is to			
	ensure that any differences observed			
	are due to the ointments and not due	E1	3	to ensure differences are due to
	to expectations that the new ointment			ointments - allow to eliminate
	will be better.			bias
	Total		5	
2(a)(i)	Chart for means	B1		1.96 (1.96~2) and 3.09 (3~3.1)
	Warning limits $210 \pm 1.96 \times 4/\sqrt{5}$	M1		use of their $z \times 4/\sqrt{5}$
	210 ± 3.51	m1		method - their z - for all limits
	206.5 ~ 213.5	A1		206.5 (206~207),
	Action limits $210 \pm 3.09 \times 4/\sqrt{5}$			213.5 (213 ~214)
	210 ± 5.53			$204.5 (204 \sim 205)$ and $215.5 (215 \sim 216)$
	$204.5 \sim 215.5$	D1	5	$215.5(215 \sim 216)$
	+ mints on chart	DI	3	disallow 206 214 ato
				- disallow 200,214 etc
(**)		D1		
(11)	Chart for ranges	BI		4.197 (or 4.20), and 5.484 (as 5.48)
	Lower Action $0.30/\times 4 = 1.5$	MI		(01 5.48)
	Lower Warning $4.107 \times 4 = 16.8$	101 1		$\frac{1}{2}$ sample size, use of E and/or
	Upper Action $5.484 \times 4 = 21.9$			upper limits only
	+ limits on chart	A1		all four limits +0.1
		B1	4	limits correctly plotted
(b)(i)	on granh	B 1		means correct by ave
(0)(1)	on graph	B1 B1	2	ranges correct - by eye
(::)	First source la suit of control on hoth		2	first comple system limits
(11)	First sample out of control on both	EIV		first sample outside action limits
	mean and range chart.			
	Action appears to have been taken	E1		other points within warning limits
	successfully as all other points within			* Č
	warning limits.			
	Mean appears to be drifting upwards	E1	3	mean appears to be increasing

2(a)(ii), b(i), (c)(i)

QJoint MMarksForm2(c)(i)mean 211.6MImethod for calc and plot mean method for calc and plot range(ii)Mean between warning limits, range below lower action limit. No action/ investigate apparent improvement in order to maintait/ check readings are correctE123(a)H ₀ : $\mu_{diff} = 0$ H ₁ : $\mu_{diff} = 0$ H ₁ : $\mu_{diff} = 0$ B1both hypotheses - must use μ or population - allow $\mu_{a} = \mu_{B}$ H ₁ : must be consistent with differencesPair123456B - A7359-1222M1 $\overline{x} = 12.167$ $s = 15.741$ m1method for cill and $\mu_{a} = \mu_{B}$ H ₁ : must be consistent with differencesPair123456B - A7359-1222 $\overline{x} = 12.167$ $s = 15.741$ m1method for cill and $\mu_{a} = \mu_{B}$ $t = (12.167 - 0)/(15.741/\do) = 1.89$ A11.89 (1.89 to 1.9) or -1.89 if A-B used 5dfcvt is is 1.476 reject H ₀ : significant evidence that older girls score more points on average.A1Alternative s.c. confidence interval 1.2.167 ± 1.476x15.741/\do 2.68 < 21.65 2.68 > 0 A1s.c unpaired t used allow maximum B1 MOMOMOA0 BIB1 A0A0B1 hypotheses B1 100dfB1 hypotheses B1 1.372 or 1.37		Solution	Marks	Total	Comments
$Z(0)$ mean 211.6MIInclude 10 for calc and plot mage both points on graph(ii)Mean between warning limits, range below lower action limit. No action/ investigate apparent improvement in order to maintain/ check readings are correctMIa(iii)Mean between warning limits, range below lower action limit. No action/ investigate apparent improvement in order to maintain/ check readings are correctE123(a)H ₀ : $\mu_{diff} = 0$ H ₁ : $\mu_{diff} > 0$ B1both hypotheses - must use μ or population - allow $\mu_A = \mu_B$ H ₁ : must be consistent with differences method for <i>i</i> ignore sign $i = (12.167 \ s = 15.741$ M1 $\bar{x} = 12.167 \ s = 15.741$ M1 $i = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ cv ts is 1.476 reject H ₀ : significant evidence that older girls score more points on average.A1Alternative s.c. confidence interval 12.167 ± 1.476x15.741/\sqrt{6} 2.68 > 0A1Alternative s.c. confidence interval 12.167 ± 12.167A1s.c critical value 1.476x15.741/\sqrt{6} = 9.49 9.49 < 12.167A1s.c critical value 1.476x15.741/\sqrt{6} = 9.49 9.49 < 12.167A1s.c unpaired t used allow maximum B1 MOMOMOA0 B1B1 A0A0B1 hypotheses B1 10dfB1 hypotheses B1 10dfB1 hypotheses B1 10df	$\frac{\mathbf{v}}{\mathbf{r}}$	Solution		Total	Comments
(ii) Mean between varning limits, range below lower action limit. No action/ investigate apparent improvement in order to maintain/ check readings are correct 19 3(a) H ₀ : $\mu_{diff} = 0$ H ₁	2(c)(1)	mean 211.0	IVI I M 1		method for calc and plot mean
A15Dots points of graph commended action consistent with their points and limits(ii)Mean between warning limits, range below lower action limit. No action/ investigate apparent improvement in order to maintain/ check readings are correctA15Dots points correct recommended action consistent with their points and limits3(a)H ₀ : $\mu_{daff} = 0$ $H_1: \mu_{daff} > 0B1both hypotheses - must use \mu orpopulation - allow \mu_A = \mu_B H_1: must beconsistent with differencesPair123456B - A7359-121222M1mlsee of their s.d./v6method for t - ignore sign\overline{x} = 12.167s = 15.741ml1.89(1.89 to 1.9) or -1.89 if A-B used5dfr = (12.167 - 0)/(15.741/v6) = 1.89A1B1B1B1L12.167 ± 1.476x15.741/v62.68 ~ 21.652.68 > 01.89(1.89 to 1.9) or -1.89 if A-B used5dfAlternatives.c. confidence interval12.167 ± 1.476x15.741/v62.68 ~ 21.652.68 > 0A12.68 (2.65 to 2.7)s.c. confidence interval12.167 ± 1.476x15.741/v69.49 < 21.2167$		lange i		2	heth neinte semest
(ii) Weam between warning infuts, range below lower action limits. No action/ investigate apparent improvement in order to maintain/ check readings are correct EIV (iii) EIV (iii) EIV (iii) EIV (iii) EIV (iv) EIV (i		+ points on graph		3	both points correct
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(11)	helew lower setien limit, range	EIV		recommended action consistent with their
Investigate apparent improvement in order to maintain/ check readings are correctE12correct action based on correct points and limits3(a)H ₀ : $\mu_{dff} = 0$ H ₁ : $\mu_{dff} = 0$ H ₂ : $\mu_{dff} = 0$ H ₁ : $\mu_{dff} = 0$ H ₂ : $\mu_{dff} = 0$ H ₁ : $\mu_{dff} = 0$ H ₂ : $\mu_{dff} = 0$ H		investigate encount improvement in			points and mints
order to maintain/ circlex readings areF12Contect action based on contect points and limitsinitial193(a)H_0: $\mu_{diff} = 0$ H_1: $\mu_{diff} > 0$ B1both hypotheses - must use μ or population - allow $\mu_a = \mu_B$ H_1: must be consistent with differencesPair123456Pair123456Pair123456Pair123456B - A7359-121222Mimiuse of their s.d./ $\sqrt{6}$ $x = 12.167$ $s = 15.741$ mi $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89A11.89 (1.89 to 1.9) or -1.89 if A-B used5dfcv t_s is 1.4761.4761.476 or 1.48- ignore signreject H_0: significant evidence that oldergirls score more points on average.A1Alternatives.c. confidence interval12.167 \pm 1.476 x 15.741/\sqrt{6}2.68 (2.65 to 2.7)s.c confidence interval12.167 \pm 2.1672.68 (2.65 to 2.7)s.c unpaired t usedallow maximumB1 MM00m0A0 B1B1 A0A0B1 hypothesesB1 10dfB1 MM00m0A0 B1B1 A0A0B1 hypothesesB1 10df$		investigate apparent improvement in	E1	2	correct action based on correct points and
Immuse Immuse 3(a) $H_0: \mu_{diff} = 0$ $H_1: \mu_{diff} > 0$ B1 Bit both hypotheses - must use μ or population - allow $\mu_A = \mu_B$ H_1 ; must be consistent with differences method for differences Pair 1 2 3 4 5 6 M1 $\overline{x} = 12.167$ $s = 15.741$ m1 method for differences use of their s.d./ $\sqrt{6}$ $\overline{x} = 12.167$ $s = 15.741$ m1 1.89 (1.89 to 1.9) or -1.89 if A-B used 5df $cv t_5$ is 1.476 B1 1.476 or 1.48 - ignore sign reject $H_0:$ significant evidence that older girls score more points on average. A1 Alternative S.c. confidence interval $12.167 \pm 1.476x15.741/\sqrt{6}$ $2.68 - 21.65$ $2.68 > 0$ $2.68 (2.65 \text{ to } 2.7)$ s.c. critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 (9.48 \text{ to } 9.5)$ $2.68 (2.65 \text{ to } 2.7)$ $2.68 (2.65 \text{ to } 2.7)$ s.c. unpaired t used allow maximum B1 MOM0m0A0 B1B1 A0A0 B1 hypotheses B1 hypotheses B1 hypotheses B1 MOM0m0A0 B1B1 A0A0 co all differences area area area area area area area ar		order to maintain/ check readings are	EI	Z	timita
3(a) H ₀ : $\mu_{daff} = 0$ B1 both hypotheses - must use μ or population - allow $\mu_A = \mu_B$ H ₁ : must be consistent with differences method for differences Pair 1 2 3 4 5 6 Pair 1 2 3 4 5 6 M1 $\overline{x} = 12.167$ $s = 15.741$ m1 m1 method for t - ignore sign 1.89 ($1.89 \text{ to } 1.9$) or -1.89 if A-B used 5df $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 A16 B1 1.476 or 1.48 - ignore sign $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 I.476 or 1.48 - ignore sign reject H ₀ - must be compared with correct tail of t cv t ₅ is 1.476 R1 B1 A1 $\sqrt{9}$ A1 Alternative S.c. confidence interval $12.167 \pm 1.476x 15.741/\sqrt{6}$ A1 $\sqrt{9}$ A1 $s.c$ critical value $1.476x 15.741/\sqrt{6} = 9.49$ 9.49 ($9.48 \text{ to} 9.5$) B1 hypotheses B1 MOMOm0A0 B1B1 A0A0 B1 MOMOm0A0 B1B1 A0A0 B1 hypotheses B1 Hypotheses		conect			
3(a) $H_0: \mu_{diff} = 0$ $H_1: \mu_{diff} > 0$ B1both hypotheses - must use μ or population - allow $\mu_A = \mu_B$ $H_1: must beconsistent with differencesmethod for differencesmethod for differencesuse of their s.d./\sqrt{6}method for t - ignore sign\overline{x} = 12.167s = 15.741m1t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89A1B1cv t_5 is 1.476reject H_0: significant evidence that oldergirls score more points on average.A1B1B1A1Alternatives.c. confidence interval12.167 \pm 1.476x15.741/\sqrt{6}2.68 \sim 21.652.68 > 0A1A1s.c critical value1.476x15.741/\sqrt{6} = 9.499.49 < 12.167A1s.c unpaired t usedallow maximumB1 MOM0m0A0 B1B1 A0A0B1 hypothesesB1 10dfB1 hypothesesB1 10dfB1 1.372 or 1.37$				19	
H1: $\mu_{diff} > 0$ population - allow $\mu_A = \mu_B$ H1: must be consistent with differences method for differences method for differencesPair123456B - A7359-121222M1m1m1m1m1 $\overline{x} = 12.167$ $s = 15.741$ m1m1 $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1B1B1 $cv t_5$ is 1.476B1B1A1reject H_0: significant evidence that older girls score more points on average.A11.89 (1.89 to 1.9) or -1.89 if A-B used 5dfAlternative s.c. confidence interval 112.167 ± 1.476x15.741/ $\sqrt{6}$ 2.68 ~ 21.65 2.68 > 0 A19S.c critical value 1.476x15.741/ $\sqrt{6} = 9.49$ 9.49 < 12.167A19S.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0B1 hypotheses B1 10dfB1 hypotheses B1 10df	3 (a)	$H_0: \mu_{diff} = 0$	B1		both hypotheses - must use μ or
Pair 1 2 3 4 5 6 M1 $\bar{x} = 12.167$ $s = 15.741$ M1 $\bar{x} = 12.167$ $s = 15.741$ m1 $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 $r = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 $B1$ B1 $cv t_s is 1.476$ B1 reject H_0: significant evidence that older girls score more points on average. A1 Alternative A1 s.c. confidence interval 12.167 ± 1.476x15.741/ $\sqrt{6}$ A1 $2.68 \sim 21.65$ 2.68 > 0 s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ S.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 B1 hypotheses B1 M0M0m0A0 B1B1 A0A0 B1 hypotheses B1 1.372 or 1.37		$H_1: \mu_{diff} > 0$			population - allow $\mu_A = \mu_B$ H ₁ : must be
Pair 1 2 3 4 5 6 M1 method for differences $\bar{x} = 12.167$ $s = 15.741$ M1 m1 method for $d = 1.89$ M1 method for $t - ignore sign$ $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 B1 B1 B1 $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 B1 1.89 (1.89 to 1.9) or -1.89 if A-B used 5df $t = (12.167 + 1.476x)$ significant evidence that older girls score more points on average. A1 1.89 (1.89 to 1.9) or -1.89 if A-B used 5df Alternative s.c. confidence interval 12.167 $\pm 1.476x 15.741/\sqrt{6}$ 2.68 ~ 21.65 2.68 > 0 2.68 (2.65 to 2.7) s.c critical value $1.476x 15.741/\sqrt{6} = 9.49$ 9.49 (9.48 to 9.5) 3.68 (1.047) $y = 4y < 12.167$ s.c unpaired t used B1 hypotheses B1 hypotheses B1 100f B1 1.372 or 1.37 B1 hypotheses B1 1.372 or 1.37					consistent with differences
B - A 7 35 9 -12 12 22 $\overline{x} = 12.167 s = 15.741$ MI m1 $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 cv t ₅ is 1.476 reject H ₀ : significant evidence that older girls score more points on average. Alternative s.c. confidence interval 12.167 ± 1.476x15.741/ $\sqrt{6}$ 2.68 ~ 21.65 2.68 > 0 s.c critical value 1.476x15.741/ $\sqrt{6}$ = 9.49 9.49 < 12.167 s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.a c all differences come sign		Pair 1 2 3 4 5 6	M1		method for differences
$\overline{x} = 12.167$ $s = 15.741$ M1 m1use of their s.d./ $\sqrt{6}$ method for t - ignore sign $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89A1B1B1cv t_5 is 1.476B1B1B1reject H0: significant evidence that oldergirls score more points on average.A1B1B1A11.89 (1.89 to 1.9) or -1.89 if A-B used5dfAlternatives.c. confidence interval12.167 \pm 1.476x15.741/\sqrt{6}2.68 > 0A19Alternatives.c. critical value1.476x15.741/\sqrt{6} = 9.499.49 < 12.167A1/9s.c unpaired t usedallow maximumB1 M0M0m0A0 B1B1 A0A0B1 hypothesesB1 10dfB1 1.372 or 1.37B1 hypothesesB1 10dfB1 1.372 or 1.37$		B - A 7 35 9 -12 12 22			
$\overline{x} = 12.167$ $s = 15.741$ m1method for t - ignore sign $t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1B1 $1.89 (1.89 \text{ to } 1.9) \text{ or } - 1.89 \text{ if A-B used}$ $cv t_5 \text{ is } 1.476$ B1A1B1 $cv t_5 \text{ is } 1.476$ B1A1 $reject H_0$: significant evidence that olderA1 $girls \text{ score more points on average.}A1AlternativeA1s.c. confidence interval12.167 \pm 1.476 x 15.741/\sqrt{6}2.68 \sim 21.652.68 > 0s.c critical value1.476 x 15.741/\sqrt{6} = 9.499.49 < (2.167)9.49 (9.48 \text{ to } 9.5)s.c unpaired t usedB1 hypothesesB1 M0M0m0A0 B1B1 A0A0B1 hypothesesB1 1.04fB1 1.372 or 1.37$			M1		use of their s.d./ $\sqrt{6}$
$t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ A1 B1 B1 B1 B1 A11.89 (1.89 to 1.9) or -1.89 if A-B used 5df $cv t_5 is 1.476$ reject H ₀ : significant evidence that older girls score more points on average.A1 A1Alternative s.c. confidence interval 12.167 $\pm 1.476 \times 15.741/\sqrt{6}$ 2.68 ~ 21.65 2.68 > 0 A1 A1s.c critical value 1.476 \times 15.741/\sqrt{6} = 9.49 9.49 < 12.167A1 A1s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0B1 hypotheses B1 10df B1 1.372 or 1.37		$\overline{x} = 12.167$ $s = 15.741$	m1		method for <i>t</i> - ignore sign
$t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$ $t = (12.167 + 1.476 \times 15.741/\sqrt{6})$					
B1 B1 reject H0: significant evidence that older girls score more points on average.B1 B1 A1Sdf 1.476 or 1.48 - ignore sign reject H0 - must be compared with correct tail of t conclusion in context - requires previous A1Alternative s.c. confidence interval 12.167 \pm 1.476x15.741/ $\sqrt{6}$ 2.68 \sim 21.65 2.68 $>$ 0A1 $\sqrt{9}$ Sdf 1.476 or 1.48 - ignore sign reject H0 - must be compared with correct tail of t conclusion in context - requires previous A1Alternative s.c. confidence interval 12.167 \pm 1.476x15.741/ $\sqrt{6}$ 9.49 < 12.167		$t = (12.167 - 0)/(15.741/\sqrt{6}) = 1.89$	A1		1.89 (1.89 to 1.9) or -1.89 if A-B used
cv t_5 is 1.476B1reject H_0: significant evidence that older girls score more points on average.A1Alternative s.c. confidence interval $12.167 \pm 1.476 \times 15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 > 0$ A1s.c critical value $1.476 \times 15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ A1s.c unpaired t used allow maximum B1 MOM0m0A0 B1B1 A0A0B1 hypotheses B1 10dfB1 MOM0m0A0 B1B1 A0A0B1 hypotheses B1 10df			B1		5df
reject H_0 : significant evidence that older girls score more points on average.A1reject H_0 - must be compared with correct tail of t conclusion in context - requires previous A1Alternative s.c. confidence interval 12.167 \pm 1.476x15.741/ $\sqrt{6}$ 2.68 \sim 21.65 2.68 $>$ 0A1A1s.c critical value 1.476x15.741/ $\sqrt{6}$ = 9.49 9.49 < 12.1672.68 (2.65 to 2.7)2.68 (2.65 to 2.7)s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0B1 hypotheses B1 10df B1 1.372 or 1.37B1 hypotheses B1 1.372 or 1.37		cv t ₅ is 1.476	B1		1.476 or 1.48 - ignore sign
girls score more points on average.A1 $$ 9correct tail of t conclusion in context - requires previous A1Alternative s.c. confidence interval 12.167 $\pm 1.476 \times 15.741/\sqrt{6}$ 2.68 ~ 21.65 2.68 > 0 92.68 (2.65 to 2.7)s.c critical value 1.476 \times 15.741/\sqrt{6} = 9.49 9.49 < 12.1679.49 (9.48 to 9.5)9.49 (9.48 to 9.5)s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0B1 hypotheses B1 10df B1 1.372 or 1.379.10df B1 1.372 or 1.37		reject H ₀ : significant evidence that older	A1		reject H_0 - must be compared with
Alternative s.c. confidence interval $12.167 \pm 1.476x15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 > 0$ Al $\sqrt{9}$ conclusion in context - requires previous A1s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ 2.68 (2.65 to 2.7)2.68 (2.65 to 2.7)s.c uppaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0B1 hypotheses B1 10df B1 1.372 or 1.37B1 hypotheses B1 1.372 or 1.37		girls score more points on average.			correct tail of t
Alternative $A1\sqrt{9}$ A1 s.c. confidence interval $12.167 \pm 1.476x15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 \sim 21.65$ $2.68 > 0$ $2.68 (2.65 \text{ to } 2.7)$ $2.68 (2.65 \text{ to } 2.7)$ s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 (9.48 \text{ to } 9.5)$ s.c unpaired t used allow maximum B1 hypotheses B1 M0M0m0A0 B1B1 A0A0 B1 1.372 or 1.37					conclusion in context - requires previous
Alternative s.c. confidence interval $12.167 \pm 1.476 \times 15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 > 0$ s.c critical value $1.476 \times 15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 a oll differences some size			A1√	9	A1
s.c. confidence interval $12.167 \pm 1.476x15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 > 0$ s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.c all differences same sign		Alternative			
$12.167 \pm 1.476 \times 15.741/\sqrt{6}$ $2.68 \sim 21.65$ $2.68 > 0$ s.c critical value $1.476 \times 15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.a all differences some sign		s.c. confidence interval			
$\begin{array}{c} 2.68 \sim 21.65\\ 2.68 > 0\\ \text{s.c critical value}\\ 1.476 x 15.741/\sqrt{6} = 9.49\\ 9.49 < 12.167\\ \text{s.c unpaired t used}\\ \text{allow maximum}\\ \text{B1 M0M0m0A0 B1B1 A0A0}\\ \text{B1 M0M0m0A0 B1B1 A0A0}\\ \text{a.e. all differences same sign}\\ \end{array}$		$12.167 \pm 1.476 \times 15.741 / \sqrt{6}$			
2.68 > 0 s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ 9.49 < 12.167 s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.c oll differences some sign		2.68~21.65			
s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.a. all differences same sign		2.68 > 0			2.68 (2.65 to 2.7)
s.c critical value $1.476x15.741/\sqrt{6} = 9.49$ $9.49 < 12.167$ s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 B1 differences same sign					
$\begin{array}{c} 1.476x15.741/\sqrt{6} = 9.49 \\ 9.49 < 12.167 \\ \text{s.c unpaired t used} \\ \text{allow maximum} \\ \text{B1 M0M0m0A0 B1B1 A0A0} \\ B1 model back back back back back back back back$		s.c critical value			
9.49 < 12.167 s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 s.c all differences same sign		$1.476 \times 15.741 / \sqrt{6} = 9.49$			
s.c unpaired t used allow maximum B1 M0M0m0A0 B1B1 A0A0 B1 lodf B1 1.372 or 1.37		9.49 < 12.167			9.49 (9.48 to 9.5)
B1 M0M0m0A0 B1B1 A0A0 B2 a all differences same sign		a a unnaired tugad			
B1 M0M0m0A0 B1B1 A0A0 B1 1.372 or 1.37		s.c unparted t used			R1 hypotheses
BI WOWOMOAO BIBI AOAO BI 1.372 or 1.37		$\mathbf{P}_{1} = \mathbf{M}_{0} \mathbf{M}_{0}$			P1 10df
B1 1.3/2 OF 1.3/					D 1 1001 D 1 1 272 or 1 27
		s c. all differences same sign			D1 1.3/2 01 1.3/
s.c. all unificiences same sign		allow maximum			
1000000000000000000000000000000000000		$\mathbf{R}_{1} \mathbf{M}_{1} \mathbf$			

SS06 (cont)

SS06 (cont)					
Q	Solution	Marks	Total	Comments	
3(b)	Differences may be regarded as a random sample from the population and are normally distributed	E1 E1	2	random normal	
(c)	Boys would introduce an additional source of experimental error and make any effect of age more difficult to detect.	E1	1	explanation	
(d)(i)	ranks also unreliable - Wilcoxon signed-	E1		ranks unreliable	
	rank test unsuitable.	El		Wilcoxon unsuitable	
(ii)	sign test valid but unlikely to detect a difference with such a small sample.	E1	3	sign test valid sample too small for sign test to be effective. maximum 3	
			15		
4(a)(i)	% non-conf 1 3 5 7 10 15 P(Accept) 0.998 0.962 0.873 0.747 0.537 0.254	B1 M1 A1	3	Use of Binomial n = 25 method for P(Accept) at least two points all correct 3dp -allow one small slip	
(ii)	on graph below	M1		points plotted	
		A1	2	accurate plot - points joined - passes through (0,1)	
(iii)	on graph below	M1		shape of ideal OC	
		A1	2	accurate plot - line above 5% not necessarily visible	

SS06 (cont)

				2 (
Q	Solution	Marks	Total	Comments
4(b)	% non-conforming 3 15			0.983 (0.9825 to 0.9835) and
	P(Accept) 0.983 0.112	B1	1	0.112 (0.1115 to 0.1125)
(c)(i)	More chance of accepting batch with low	E1		advantage (b) compared to (a)
(-)(-)	% non-conforming			
	Less chance of accenting batch with	F1		advantage (b) compared to (a)
	high % non-conforming	LI		udvantage (b) compared to (a)
(;;)	Paquiras more components to be	E1	2	disadvantage (b) compared to (a)
(11)	tested	L'I	5	disadvantage (b) compared to (a)
	lested			
	Total		11	
5(a)(i)	O M R Tot			
	A 42 29 19 90			
	B 37 33 24 94			
	C 24 29 18 71			
	D 25 22 13 60			
	Tot 128 113 74 315			
	$\Sigma x^2 = 9019$			
	Between Models SS			
	$(00^2 + 0.4^2 + 71^2 + (0^2)) = 215^2$	M1		mathed hotzeon models SS
	$\left \frac{90+94+71+60}{-315}\right - \frac{315}{-256.92}$	IVI I		method between models 55
	Between Campers SS			
	$(128^2 + 112^2 + 74^2) = 215^2$			
	$\left \frac{128 + 113 + 74}{128 + 113 + 74} \right - \frac{313}{12} = 388.5$	M1		method between campers SS
	315 ²	M1		method total SS
	Total SS = $9019 - \frac{10}{12} = 750.25$			
	12			
	Source SS DF MIS	M1		method Error SS
	Models 230.92 5 83.04 Commons 289.50 2 104.25	B1		df 3.2.6
	Campers 388.30 2 194.25	m1		MS - their df
	Error 104.83 6 17.47			
	10tal /50.25 11			
	H _o : no difference between models			
	F = 85.64/17.47 = 4.90	M1		method for E - their positive SS and df
	$cv F_{Fr,cl}$ is 4.757 reject H_{a-} not all	1111		memou for r - mem positive 55 and dr
	models take same time to nitch on	D1		4.757 and 5.142 (2 dm)
	average	DI		4.757 and 5.145 (2up)
	Ho: no difference between compary	A 1 ./		and the star of the star
	F = 10A 25/17 A7 = 11.1	AIN		conclusion - must be compared
	1 = 177.25(17.7) = 11.1			with upper tail of F
	$v r_{[2,6]}$ is 3.143 reject n_0 - not all	M1		method for F - their positive SS
	on overage			and df
	on average	A1		4.90 (4.85 - 4.95) and 11.1(11.0 to 11.2)
		A1√		conclusion- must be compared with
		'		upper
		. 1		with upper tail of F
		AI√		both conclusions in context – needs both
				previous A1 $$ marks
				providuo III (munto

Q		Solutio)n	Marks	Total	Comments
5(a)(ii)	D appears to take least time to pitch but			B1		D CAO
	this could be because it is always pitched					
	last after pract	tice on oth	er models.	E1		because always pitched last
(b)(i)	<u>Source</u>	SS	DF			
	Order	577.5	3			
	Camper	198.5	3			
	Model	611.5	3	B1		df correct - allow omission of total df
	<u>Error</u>	134.5	6	D1		
	Total	1522.0	1 15	B1	2	134.5 (134 to 135)
(ii) (iii)	H ₀ : no difference be $F = (611.3)^{-1}$ = 203.8 $cv F_{[3,6]} 4.75$ $Reject H_0 + 1$ difference be Totals A	ence betwe 5/3)/(134.5 33/22.417 7 - there is e etween mo - 128 - 93	een models 5/6) = 9.09 evidence of a dels.	M1 A1 B1 A1√	4	method for F - their df and SS 9.09 (9 \sim 9.15) 4.757 (4.75 \sim 4.76) conclusion - requires cv from F tables
	C - 137 D - 162			B1		В
	model B appears to take the least time to pitch.		E1	2	comparison of totals or means	
(iv)	Latin Square enables 3-factors at n levels to be examined using only n^2 trials. If a Latin Square is to be used and there are only 4 models to be compared		E1 E1	2	cannot be more campers than models comment on advantages of Latin Squares	
	then only 4 campers can be included.					
	Total				25	
			TOTAL		75	

SS06 (cont)