

General Certificate of Education (A-level) June 2013

Statistics

SS05
(Specification 6380)
Statistics 5

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$s_{x}=11.0548$ or $\sum(x-\bar{x})^{2}=1710.93$	B1		awfw 11.0 to 11.1 or 1710 to 1711
	[90% confidence interval for σ]			
	$6.571 \leq \frac{14 \times 11.1^{2}}{\sigma^{2}} \leq 23.68$	M1		M1 any correct expression - condone one small slip eg $15 s^{2}$ or $14 s$ and incorrect χ^{2}
		m1		m 1 completely correct expression condone incorrect χ^{2}
	$6.571 \leq \frac{1710.9}{\sigma^{2}} \leq 23$.	B1		B1 14 df (seen or implied by correct cv.)
	$6.571 \leq \frac{170.9}{\sigma^{2}} \leq 23.68$	B1		B1 awfw 6.57~ 6.571, awfw 23.6 ~ 23.7 both
	$72.25 \leq \sigma^{2} \leq 260.38$	M1		M1 correct method for setting up interval for σ or σ^{2}
	$8.50 \leq \sigma \leq 16.1$	A1 cao	7	awfw 8.40 ~ 8.60 and $16.0 \sim 16.30$
(b)	18 is above the upper limit of the CI 18 does not fall inside the CI	E1		comparison with correct CI
	Alan is unlikely to have met his aim	E1dep	2	Dep E1 - accept "No"; or "Alan has not met his aim"
	Total		9	

Q	Solution	Marks	Total	Comments
2	$\begin{aligned} & \mathrm{H}_{0}: \mu_{A}=\mu_{B}+24 \\ & \mathrm{H}_{1}: \mu_{A}>\mu_{B}+24 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		(s.c. B1 for both $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{B}$ and $\mathrm{H}_{1}: \mu_{A}>\mu_{B}$)
	$\bar{x}_{A}=473 \quad \bar{x}_{B}=438$	B1		B1 both means; awfw 472 ~ 473 and $438 \sim 439$
	test statistic $z=\frac{473-438-24}{\sqrt{7^{2} 10^{2}}}$	M1		M1 Numerator (allow (473-438) or (438-473-24)
	$\sqrt{\frac{7^{2}}{6}}+\frac{10^{2}}{8}$	M1		M1 Denominator
	$=2.29$	A1		A1 awfw $2.25 \sim 2.45$
	cv 5\% level 1-tail test $z=1.6449$	B1		B1 awfw $1.64 \sim 1.65$ (condone \pm)
	$2.42>1.6449 \text { reject } \mathrm{H}_{0}$	A1		dep A1 for ts (consistent with hypotheses) and B1 for cv
	Evidence at the 5\% level to support Nasreen's belief.	E1	9	Correct comment in context dep. on previous A1 - must mention mean or average and some element of doubt.
				eg Some evidence that boxes of eggs from Alaric are more than 24gm heavier on average than those from Belinda
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & \mathrm{H}_{0}: \sigma_{M}=\sigma_{T} \text { or } \mathrm{H}_{0}: \sigma_{M}^{2}=\sigma_{T}{ }^{2} \\ & \mathrm{H}_{1}: \sigma_{M} \neq \sigma_{T} \end{aligned}$	B1		B1 Both. Other suffices must be clearly assigned
	$s_{T}=17.8$ or $s_{T}{ }^{2}=317$	B1		B1 17.7 ~ 17.8 or $316 \sim 317$
	$s_{M}=18.4$ or $s_{M}{ }^{2}=338$	B1		B1 18.3 ~ 18.4 or $338 \sim 339$
	Test Statistic $F=\frac{18.4^{2}}{17.8^{2}}=1.07$	M1A1		awfw1.06~1.07 (1.0681)
	upper 2.5% value of $F_{9,7}=4.823$	B1B1		B1 df , B1 cv
	$1.07<4.823$ accept H_{0}			
	there is no difference in the variability of the yields from plants grown using Moretom or from plants grown using Tomsplus at the 5% level of significance.	E1	8	conclusion in context dep A1 and cv B1
3(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{M}=\mu_{T} \\ & \mathrm{H}_{1}: \mu_{M}>\mu_{T} \end{aligned}$	B1		Both
	$S_{p}^{2}=\frac{7(17.8)^{2}+9(18.4)^{2}}{18-2}=329$	M1A1		M1 A1 (awfw 328 ~ 330)
	$\bar{\chi}_{M}=1377 \quad \bar{x}_{T}=1342$	B1		B1 both means (awfw 1377 ~ 1378, 1342 ~ 1343)
	Test statistic $t=\frac{1377-1342}{\sqrt{329\left(\frac{1}{8}+\frac{1}{10}\right)}}=4.101$	M1 M1 A1		M1 (numerator) accept 1342-1377 M1 (denominator - ft on their $S_{p}{ }^{2}$ but must have $1 / 8+1 / 10$) A1 awfw $4.10 \sim 4.11$
	Critical value $t_{16}= \pm 2.583$	B1		c.v. ignore sign
	$4.10>2.583$ or $-4.10<-2.583 \rightarrow$ reject H_{0}	A1		A1 - dependent on A1 for ts (sign consistent with hypotheses) and B1 for c.v
	Evidence at 1% level that average yield from cherry tomato plants is increased by using the Moretom fertiliser.	E1	10	Conclusion in context dependent on previous A1

Q	Solution	Marks	Total	Comments
3(c)	$\begin{array}{l}\text { Cost per plant : using Tomsplus } £ 1.25 \\ \text { using Moretom } £ 1.50\end{array}$	B1		$\begin{array}{l}\text { B1: calculating the cost per plant } \\ \text { correctly. }\end{array}$
$\begin{array}{l}\text { Average income per plant : } \\ \text { using Tomsplus } £ 3 \times 1.342=£ 4.026 \\ \text { using Moretom } £ 3 \times 1.377=£ 4.131 \\ \text { (Total income : Tomsplus: } £ 32.21 \\ \text { Moretom; } £ 41.32 \text {) }\end{array}$	M1		$\begin{array}{l}\text { M1 Finding the income per plant (or total } \\ \text { income) by multiplying the mean yield (or } \\ \text { total yield) in kilograms by } £ 3 \text { for each } \\ \text { type of fertiliser. }\end{array}$	
$\begin{array}{l}\text { Profit per plant: Tomsplus : } £ 2.78 \\ \text { Moretom: } £ 2.63 \\ \text { Thomas should continue with Tomsplus as } \\ \text { this gives a greater profit per plant. }\end{array}$	A1	3	$\begin{array}{l}\text { A1 } £ 2.78 \text { and } £ 2.63 \text { seen and "continue } \\ \text { with Tomsplus" recommended. }\end{array}$	
sc B1 (if no calculations seen)				
Recommend using Moretom as additional				
expense justified by almost certain				
increase in average yield.				

Q	Solution	Marks	Total	Comments
5(c)	Under new system 13.5\% of appointments would overrun and of these approx 61\% would take longer than 10 minutes.	B2		B1 for each distinct correct numerical comment on probabilities using the exponential model to a maximum of 2.
Reduction in appointment time is likely to make patients wait - doctors' wishes are supported.	E1	3	E1 A single conclusion supported by numerical comments dependent on at least one B1.	
Note: the use of expressions such as "likely" or "most" must be supported by a numerical probability.	scE1 for answers unsupported by correct numerical evidence	Alternatives: Approx. 60\% of consultations last between 1 and 7 minutes and only 13.5\% take longer than 8 minutes. Health centre's suggestion is reasonable; Margaret's wishes are supported.		
	Total		$\mathbf{1 8}$	or unlikely almost 22\% of all appointments last less than 1 minute poor model - more research needed

