Version 1.0

General Certificate of Education June 2010

Statistics SS05

Statistics 5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS05				
Q	Solution	Marks	Total	Comments
1(a)	$\lambda = 1/\text{mean} = 1/0.8$ = 1.25	E1	1	E1 1/0.8 ag
(b)	P(X<0.5) = 1 - $e^{-1.25 \times 0.5}$ = 1 - $e^{-0.625}$ = 1 - 0.535 = 0.465	B1 M1A1	3	B1 1.25 × 0.5 M1 method – allow wrong tail A1 0.465 (0.464 ~ 0.466)
(c)(i)	$P(X > 0.7) = e^{-1.25 \times 0.7}$ = $e^{-0.875}$ = 0.417	M1 m1 A1	3	M1 attempt to find > 0.7 from exponential parameter 1.25 m1 method – allow wrong tail
(ii)	P(X < 1.4 X > 0.7) = P(X < 0.7) = 1 - 0.417 = 0.583	M1		A1 0.417 (0.416 ~ 0.418) M1 1 – their (c)(i)
		A1	2	A1 0.583 (0.582 ~ 0.584)
2 (a)	Total	D1	9	D1 76 0 (76 0 77) 72 1 (72 72 1)
2(a)	$\frac{x}{y} = 76.928 s_x = 2.588896$ $\frac{x}{y} = 73.0625 s_y = 2.243045$	B1 B1		B1 76.9 (76.9~77), 73.1 (73~73.1) 2.59 (2.58~2.6), 2.24 (2.24~2.25)
	$H_0: \mu_x = \mu_y \qquad H_1: \mu_x \neq \mu_s$	B1		B1 one correct hypothesis – generous B1 both correct – ungenerous
	pooled variance estimate $s^2 = (6 \times 2.588896^2 + 7 \times 2.243045^2)/13$ = 5.80254 (s=2.4088)	M1 m1		M1 attempt at pooled variance m1 correct method for pooled variance
	$t = \frac{76.928 - 73.0625}{1000000000000000000000000000000000000$	M1m1		
	$t = \frac{76.928 - 73.0625}{\sqrt{5.80254\left(\frac{1}{7} + \frac{1}{8}\right)}}$	A1 B1B1		M1 difference of means/their standard deviation
	$= 3.8655/1.2467 \\= 3.10$	A1√		m1 correct method for <i>t</i> A1 3.10 or -3.10 (3.09 ~ 3.11)
	c.v. $t_{13} = \pm 3.012$ Reject H ₀ . Conclude that mean water temperature after 5 hours for flask A is different from (higher than) for flask B	A1√	12	B1 13 df B1 3.012 or 3.01 ignore sign A1 \checkmark conclusion – must be compared with correct tail of <i>t</i> A1 \checkmark in context – requires previous A1 \checkmark
(b)	Conditions not controlled e.g. background temperature, amount of water in flask. Conditions may differ between first 7	E1		E1 conditions not controlled E1 order of experiments not randomised or balanced
	days and last 8 days.	E1	2	one mark for any sensible point
	Total		14	

Q	Solution	Marks	Total	Comments
3(a)(i)	Salt content (grams) of all Tommos served by this restaurant	B1	1	B1
(ii) (A)	 99% confidence interval for mean salt content 2.4 ± 3.355×0.2739/√9 2.4 ± 0.306 2.094 ~ 2.706 	B1 B1√ M1m1 A1	5	B1 8df –can be earned in (ii)(B) B1 $\sqrt{3.355}$ (3.35~3.36) M1 use of their s.d./ $\sqrt{9}$ m1 method for interval A1 2.1 (2.09~2.1) and 2.706 (2.7~2.71) allow in ± form
(ii) (B)	99% confidence interval for standard			M1 any correct expression – generous;
(D)	deviation given by $1.344 < 8 \times 0.2739^2 / \sigma^2 < 21.955$ $0.6/21.955 < \sigma^2 < 0.6/1.344$	M1m1 B1m1		allow small slip, incorrect χ^2 , m1 correct expression allow incorrect χ B1 1.344 (1.34 ~ 1.35) and 21.955 (21.9~22)
	$0.02733 < \sigma^2 < 0.4464$ $0.165 < \sigma < 0.668$	A1	5	m1 correct method for interval for σ (or σ^2 provided it is clearly called σ^2 or variance) A1 0.165 (0.16 ~ 0.17) and 0.668 (0.66 ~ 0.67)
(iii)	No pizzas in sample have salt content >	E1		E1 all sample below 3g
	3g Mean salt content well below 3g because upper limit of confidence interval is 2.71. Some pizzas could still have salt content	E1		E1 mean below 3g
	above 3g – confidence intervals suggest that say, mean 2.5g, s.d. 0.5g would not be unlikely which would give about 15% above 3g.	E1	3	E1 some could still be above 3g E1 numerical support for some above 3 max 3
(b)	$H_0: \sigma_Y = \sigma_W H_1: \sigma_Y > \sigma_W$	B1		B1 both hypotheses
	$F = 0.3795^2/0.2403^2 = 2.49$ c.v. $F_{[9,7]}$ is 3.677 (or compare 0.402 with 0.272)	M1A1 B1B1		M1 method for <i>F</i> A1 2.49 (2.49~2.5) B1 9 and 7 d.f. B1 3.677 (3.67~3.68)
	Accept H_0 . No significant evidence that Mario's preparation times are more	A1√		A1 \checkmark accept H ₀ must be compared with correct tail of <i>F</i>
	variable than Emilio's $p = 0.121$ compare with 0.05	A1√	7	A1 \checkmark in context – needs previous A1 \checkmark mark
	Total		21	

Q	Solution	Marks	Total	Comments
4(a)	Number of IncidentsOprobE0260.201919.1801280.323030.6852170.258524.5573110.137813.091480.05515.234 ≥ 5 50.02372.251 $\{ \geq 4$ 130.07887.486 \}	M1 B1 M1 A1 m1 m1		M1 method for probabilities – generous B1 last class \geq ; may be implied by probabilities or <i>Es</i> M1 their probabilities×95 A1 4 correct <i>Es</i> ± 0.05 m1 attempt to pool classes m1 correct pooling
	H ₀ : Poisson distribution is adequate model H ₁ : Poisson distribution is not adequate model $\Sigma(O-E)^2/E = 6.82^2/19.18 + 2.685^2/30.685 + 7.557^2/24.557 + 2.091^2/13.091 + 5.514^2/7.486 = 9.38$ c.v. χ_3^2 is 7.815 Significant evidence that the Poisson distribution is not an adequate model for the recorded incidents of damage to vehicles.	B1 M1 A1 B1√ B1√ A1√ A1√	13	B1 hypotheses – may be earned in conclusion M1 attempt at $\Sigma(O - E)^2/E$; their <i>Es</i> A1 9.38 (9.3 ~ 9.45) B1 $$ 3df – their grouping B1 $$ 7.815 – their df A1 $$ conclusion – needs correct metho for <i>Es</i> and comparison with upper tail χ^2 A1 $$ conclusion in context – needs previous A1 $$
(b)	Constant mean – mean may be higher when traffic is heavy/ weather bad Incidents occur independently – more than one vehicle may be involved in an incident No upper limit – Only a limited number of vehicles, hence there is an upper limit to the number of incidents.	E1 E1 E1 E1	4	E1 property of Poisson eg Constant mean, independence, upper limit, random E1 plausible example ×2 only allow 'constant rate' if qualified example
				x -
	Total		17	

Q	Solution	Marks	Total	Comments
5(a)	$H_0: \mu_V = \mu_W + 2$	B1		B1 one correct hypothesis
	$H_1: \mu_V > \mu_W + 2$	B1	2	B1 both correct
(b)	15.43-11.16-2	B1		B1 numerator correct (ignore sign)
	$\frac{10000000000000000000000000000000000$	B1	2	B1 denominator correct
	(2.256)			
(c)	5%	B1	1	
	Total		5	
6(a)	1/6	M1		M1 method – allow for 3/8
		A1	2	A1 1/6 or 0.166~0.167
(b)(i)	$(1/3)^3 = 1/27$	M1A1	2	M1 their probability to power 3 A1 1/27 or 0.0369~0.0371
(ii)	probability > 10 on day is $5/6$	M1		M1 prob >10 5/6 or equiv; allow 7/8
(11)	probability all >10 $(5/6)^3 = 0.579$	M1		M1 prob all >10
	probability at least one <10 on day	m1		m1 prob at least one < 10
	$1 - (5/6)^3 = 91/216 = 0.421$	A1	4	A1 91/216 or 0.42~0.422
(c)	equal numbers in each year/ births equally	E1	1	E1 any valid point
	spaced throughout year.			
	Total		9	
	TOTAL		75	